我正在使用OpenCV
,SIFT
并且Homography
为了检测图片中的所有对象。
我的全局图片如下所示:
而且我想检测图片上的所有灯,即使每个灯之间的方向不完全相同。
我的模型图片如下所示:
我用 Python 编写了这个脚本:
#-*- coding: utf-8! -*-
import os, shutil
import numpy as np
import cv2
#########################
# SIFT descriptors part #
#########################
img1 = cv2.imread('/Users/test/Desktop/SIFT/Ville/ville.jpg',0)
img2 = cv2.imread('/Users/test/Desktop/SIFT/Ville/lampe.jpg',0)
##########################
# Initiate SIFT detector #
##########################
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
#bf = cv2.BFMatcher()
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m,n in matches :
if m.distance < 0.7*n.distance :
good.append([m])
MIN_MATCH_COUNT = 3
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
else:
print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
matchesMask = None
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.imshow(img3, 'grayfinal.jpg'),plt.show()
cv2.imwrite('matches.jpg',img3)
我收到此错误:
Traceback (most recent call last):
File "image.py", line 34, in <module>
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
AttributeError: 'list' object has no attribute 'queryIdx'
你有想法吗 ?
编辑 :
通过假设的解决方案,我得到了一些看起来正确的东西。但是我怎么能检测到图片上的其他灯呢?