2

我正在使用 scikit learn 的“光谱聚类”功能。我能够对 8100 x 8100 矩阵执行聚类,但此函数会为 10000 x 10000 矩阵引发错误。

有没有人将此功能用于大型矩阵?

编辑:我收到以下错误消息:

    Not enough memory to perform factorization.
    Traceback (most recent call last):
    File "combined_code_img.py", line 287, in <module>
    labels=spectral.fit_predict(Affinity)
    File "/root/anaconda/lib/python2.7/site-packages/sklearn/base.py",        
    line 410, in fit_predict
    self.fit(X)
    File "/root/anaconda/lib/python2.7/site-packages/sklearn/cluster/spectral.py", line 463, in fit
    assign_labels=self.assign_labels)
    File "/root/anaconda/lib/python2.7/site-packages/sklearn/cluster/spectral.py", line 258, in spectral_clustering
    eigen_tol=eigen_tol, drop_first=False)
    File "/root/anaconda/lib/python2.7/site-packages/sklearn/manifold/spectral_embedding_.py", line 265, in spectral_embedding
tol=eigen_tol, v0=v0)
    File "/root/anaconda/lib/python2.7/site-packages/scipy/sparse/linalg/eigen/arpack/arpack.py", line 1560, in eigsh
symmetric=True, tol=tol)
    File "/root/anaconda/lib/python2.7/site-packages/scipy/sparse/linalg/eigen/arpack/arpack.py", line 1046, in get_OPinv_matvec
    return SpLuInv(A.tocsc()).matvec
    File "/root/anaconda/lib/python2.7/site-packages/scipy/sparse/linalg/eigen/arpack/arpack.py", line 907, in __init__
    self.M_lu = splu(M)
    File "/root/anaconda/lib/python2.7/site-packages/scipy/sparse/linalg/dsolve/linsolve.py", line 261, in splu
ilu=False, options=_options)
    MemoryError

我的机器有 16 GB 内存。

4

1 回答 1

2

光谱聚类算法的时间复杂度约为 O(n³),空间复杂度相当差,因为您用 16 GB RAM 处理约 0.8 GB 数据集(10000x10000 数组,假设为 64 位浮点数)的内存已用完。因此它不适合大型数据集。

相反,您应该使用可扩展性更好的聚类算法。请参阅以下从HDBSCAN 文档中获取的基准,集群缩放

例如,MiniBatchKMeans、来自 scikit-learn 的 DBSCAN 或 HDBSCAN 会更好地扩展。

于 2017-01-07T10:28:55.173 回答