3

我为种群进化(遗传算法实现)编写了以下代码:

个人.java

import java.util.Random;

public class Individual {

    public static int SIZE = 500;
    private int[] genes = new int[SIZE];
    private double fitnessValue = 0.0;


    // Getters and Setters
    public void setGene(int index,int gene){
        this.genes[index] = gene;
    }

    public int getGene(int index){
        return this.genes[index];
    }

    public void setFitnessValue(double fitness){
        this.fitnessValue = fitness;
    }

    public double getFitnessValue(){
        return this.fitnessValue;
    }

    //Function to generate a new individual with random set of genes
    public void generateIndividual(){
        Random rand = new Random();
        for(int i=0;i<SIZE;i++){
            this.setGene(i, rand.nextInt(2));
        }
    }

    //Mutation Function
    public void mutate(){
        Random rand = new Random();
        int index = rand.nextInt(SIZE);
        this.setGene(index, 1-this.getGene(index)); // Flipping value of gene 
    }

    //Function to set Fitness value of an individual
    public int evaluate(){

        int fitness = 0;
        for(int i=0; i<SIZE; ++i) {
            fitness += this.getGene(i);
        }
        this.setFitnessValue(fitness);
        return fitness;
    }

}

人口.java

import java.util.Random;

public class Population {

    final static int ELITISM = 5;
    final static int POP_SIZE = 200+ELITISM; //Population size + Elitism (1)
    final static int MAX_ITER = 10000;
    final static double MUTATION_RATE = 0.05;
    final static double CROSSOVER_RATE = 0.7;
    public static int generation = 2;

    private static Random rand = new Random(); 
    private double totalFitness;
    private  Individual[] pop;

    //Constructor
    public Population(){
        pop = new Individual[POP_SIZE];
        //Initialising population
        for(int i=0;i<POP_SIZE;i++){
            pop[i] = new Individual();
            pop[i].generateIndividual();

        }
        //Evaluating current population
        this.evaluate();
    }

    //Storing new generation in population
    public void setPopulation(Individual[] newPop) {
        System.arraycopy(newPop, 0, this.pop, 0, POP_SIZE);
    }


    //Method to find total fitness of population
    public double evaluate(){
        this.totalFitness = 0.0;
        for (int i = 0; i < POP_SIZE; i++) {
            this.totalFitness +=  pop[i].evaluate();
        }


       return this.totalFitness;
    }


    //Getters
    public Individual getIndividual(int index) {
        return pop[index];
    }


    //Function to find fittest individual for elitism
    public Individual getFittest() {
        Individual fittest = pop[0];
        for (int i = 0; i < POP_SIZE; i++) {
            if (fittest.getFitnessValue() <= getIndividual(i).getFitnessValue()) {
                fittest = getIndividual(i);
            }
        }
        return fittest;
    }

    //CROSSOVER Function : Takes 2 individuals and returns 2 new individuals
    public static Individual[] crossover(Individual indiv1,Individual indiv2) {
        Individual[] newIndiv = new Individual[2];
        newIndiv[0] = new Individual();
        newIndiv[1] = new Individual();
        int randPoint = rand.nextInt(Individual.SIZE);
        int i;
        for (i=0; i<randPoint; ++i) {
            newIndiv[0].setGene(i, indiv1.getGene(i));
            newIndiv[1].setGene(i, indiv2.getGene(i));
        }
        for (; i<Individual.SIZE; ++i) {
            newIndiv[0].setGene(i, indiv2.getGene(i));
            newIndiv[1].setGene(i, indiv1.getGene(i));
        }

        return newIndiv;
    }

    //Roulette Wheel Selection Function
    public Individual rouletteWheelSelection() {

        double randNum = rand.nextDouble() * this.totalFitness;
        int idx;

        for (idx=0; idx<POP_SIZE && randNum>0; idx++) {
            randNum -= pop[idx].getFitnessValue();
        }
        return pop[idx-1];
    }

    //Main method

    public static void main(String[] args) {
        Population pop = new Population();
        Individual[] newPop = new Individual[POP_SIZE];
        Individual[] indiv = new Individual[2];
        //Current Population Stats
        System.out.print("Generation #1");
        System.out.println("Total Fitness = "+pop.totalFitness);
        System.out.println("Best  Fitness = "+pop.getFittest().getFitnessValue());

        int count;
        for(int iter=0;iter<MAX_ITER;iter++){
            count =0;

                //Elitism
                newPop[count] = pop.getFittest();
                count++;

           //Creating new population
            while(count < POP_SIZE){
                //Selecting parents
                indiv[0] = pop.rouletteWheelSelection();
                indiv[1] = pop.rouletteWheelSelection();

                // Crossover
                if (rand.nextDouble() < CROSSOVER_RATE ) {
                    indiv = crossover(indiv[0], indiv[1]);
                }

                // Mutation
                if ( rand.nextDouble() < MUTATION_RATE ) {
                    indiv[0].mutate();
                }
                if ( rand.nextDouble() < MUTATION_RATE ) {
                    indiv[1].mutate();
                }

                // add to new population
                newPop[count] = indiv[0];
                newPop[count+1] = indiv[1];
                count += 2;
            }
            // Saving new population in pop
            pop.setPopulation(newPop);
            //Evaluating new population
            pop.evaluate();
            System.out.println("Generation #"+ generation++);
            System.out.print("Total Fitness = " + pop.totalFitness);
            System.out.println(" ; Best Fitness = " +pop.getFittest().getFitnessValue()); 

            }


        Individual bestIndiv = pop.getFittest();
    }

}

我被要求使用以下函数测试我的算法: https ://en.wikipedia.org/wiki/Test_functions_for_optimization 用于单目标优化的测试函数

谁能解释它是如何完成的?对列表中任何一项功能的解释都会有所帮助。

4

1 回答 1

3

基因应该代表什么

我会假设你的遗传算法的实现是正确的,因为这超出了这个问题的范围。

现在你的适应度函数被定义为所有基因的总和:

double fitness = 0;
for(int i=0; i<SIZE; ++i) {
  fitness += this.getGene(i);
}
this.setFitnessValue(fitness);

这是一件很奇怪的事情:让我们想想一个个体女巫会有很高的适应度。我希望你看到没有真正的最优,个人只会倾向于增加他们的每个基因,因为这将获得更高的适应度。

第二个问题是基因应该代表一些东西:基因阵列中的双打实际上是什么意思?我们为什么关心?一个可能的例子是让它们代表模拟中个体的行为。这当然是另一个话题了,所以我们需要它们表示一些简单的东西,以便轻松计算它们的适应度。

让我们让数组的大小为 1,假设x = genes[0]. 个体将只有一个基因:x 坐标。现在我们需要定义我们的适应度函数,我们将选择 Easom y = 0。这就是我定义新适应度函数的方式:

double fitness = -cos(x)*cos(0)*exp(-(pow(x-PI,2)+pow(0-PI,2)));

当然,在类的顶部有适当的导入:

import static java.lang.Math.*;

如果您的程序确实针对适应度进行了优化,它应该收敛到x = PI. 我很快编写了自己的(诚然非常丑陋)的实现,它确实收敛正确。

还有一件事:基因应该是 adouble[]而不是 a ,因为当只能是int[]a 时,增量优化函数实际上并不起作用。xint

为什么是基因阵列?

认为你的任务希望你使用一个double数组作为基因,这样你就可以得到一个可以优化具有任意数量变量的任何函数的程序。在编程中,编写可用于多种不同事物的代码总是一个好主意。

随意问任何问题!

我试图尽可能清楚地解释一切,但如果您不明白,请随时提问!

于 2016-12-30T20:53:30.237 回答