2

试图在其自己的区域内提取边缘内外的像素,目前我正在应用 scipy Sobel 过滤器,如下所示:

im = scipy.misc.imread(filename)
im = im.astype('int32')
dx = ndimage.sobel(im, axis=0)
dy = ndimage.sobel(im, axis=1)

mag = np.hypot(dx, dy)  
mag *= 255.0 / np.max(mag)

scipy.misc.imsave('sobel.jpg', mag)

目前的结果是:

在此处输入图像描述 在此处输入图像描述

这个想法是获取边缘检测之外的像素,例如这些区域:

在此处输入图像描述

如何提取 sobel 滤波器内外区域的数组?

4

1 回答 1

1

这是一种使用交互式图像分割的方法。在这种方法中,您必须手动标记一些前景像素和一些背景像素,如下所示:

标记图像

(我在 MS Paint 中进行了标记。)下面的代码使用函数 skimage.segmentation.random_walker 进行图像分割,并生成这个分割图像:

在此处输入图像描述

(这种方法还可以处理具有更复杂背景区域的图像。)这是代码:

import skimage
import skimage.viewer
import skimage.segmentation
import skimage.data
import skimage.io
import matplotlib.pyplot as plt
import numpy as np

img = skimage.io.imread("D:/Users/Pictures/img.jpg")
imgLabeled = skimage.io.imread("D:/Users/Pictures/imgLabeled.jpg")

redChannel = imgLabeled[:,:,0]
greenChannel = imgLabeled[:,:,1]
blueChannel = imgLabeled[:,:,2]
markers = np.zeros(img.shape,dtype=np.uint)
markers[(redChannel < 20) & (greenChannel > 210) & (blueChannel < 20)] = 1
markers[(redChannel < 20) & (greenChannel < 20) & (blueChannel > 210)] = 2
plt.imshow(markers)

labels = skimage.segmentation.random_walker(img, markers, beta=1000, mode='cg')

seg1 = np.copy(img)
seg1[labels==2] = 0
seg2 = np.copy(img)
seg2[labels==1] = 0

# plt.imsave("D:/Users/Pictures/imgSeg.png",seg1)

plt.figure()
plt.imshow(seg1)
plt.figure()
plt.imshow(seg2)
于 2016-12-16T10:20:12.203 回答