1

The following was my question given by my teacher,

  1. Generate a sequence of N = 1000 independent observations of random variable with distribution: (c) Exponential with parameter λ = 1 , by inversion method.
  2. Present graphically obtained sequences(except for those generated in point e) i.e. e.g. (a) i. plot in the coordinates (no. obs., value of the obs) ii. plot in the coordinates (obs no n, obs. no n + i) for i = 1, 2, 3. iii. plot so called covariance function for some values. i.e. and averages:

enter image description here

I have written the following code,

(*****************************************************************)
(*Task 01(c) and 02(a)*)
(*****************************************************************)
n = 1000;

taskC = Table[-Log[RandomReal[]], {n}];

ListPlot[taskC, AxesLabel->{"No. obs", "value of the obs"}]

i = 1;
ListPlot[Table[
    {taskC[[k]], taskC[[k+i]]}, 
    {k, 1, n-i,1}],
AxesLabel->{"obs.no.n", "obs.no.n+1"}]

i++;
ListPlot[Table[
    {taskC[[k]], taskC[[k+i]]},
    {k, 1, n-i,1}],
AxesLabel-> {"obs.no.n", "obs.no.n+2"}]

i++;
ListPlot[Table[
    {taskC[[k]], taskC[[k+i]]},
    {k,1,n-i,1}],
AxesLabel->{"obs.no.n", "obs.no.n+3"}]

avg = (1/n)*Sum[taskC[[i]], {i,n}];

ListPlot[Table[1/(n-tau) * Sum[(taskC[[i]]-avg)*(taskC[[i+tau]] - avg), n], {tau, 1,100}], 
    Joined->True, 
    AxesLabel->"Covariance Function"]

enter image description here

He has commented,

The plots of co-variance functions should start from 0-shift. Note that for larger than 0 shifts you are estimating co-variance between independent observations which is zero, while for 0 shift you are estimating variance of observation which is large. Thus the contrast between these two cases is a clear indication that the observations are uncorrelated.

What did I do wrong?

How can I correct my code?

4

1 回答 1

1

零移意味着计算 tau = 0 的协方差,这就是方差。

Labeled[ListPlot[Table[{tau,
    1/(n - tau)*Sum[(taskC[[i]] - avg)*(taskC[[i + tau]] - avg), {i, n - tau}]},
   {tau, 0, 5}], Filling -> Axis, FillingStyle -> Thick, PlotRange -> All,
  Frame -> True, PlotRangePadding -> 0.2, AspectRatio -> 1],
 {"Covariance Function K(n)", "n"}, {{Top, Left}, Bottom}]

在此处输入图像描述

Variance[taskC]

0.93484

Covariance[taskC, taskC]

0.93484

(* n = 1 *)
Covariance[Most[taskC], Rest[taskC]]

0.00926913

于 2016-11-30T14:16:57.673 回答