kappam.fleiss 函数和 concordance 函数的区别在于第一个用于详细评估者,第二个用于汇总数据。从 Wikipedia 页面查看以下示例:
DATA <- data.frame(Rater1 = c(5, 2, 3, 2, 1, 1, 1, 1, 1, 2))
DATA$Rater2 <- c(5, 2, 3, 2, 1, 1, 1, 1, 1, 2)
DATA$Rater3 <- c(5, 3, 3, 2, 2, 1, 1, 2, 1, 3)
DATA$Rater4 <- c(5, 3, 4, 3, 2, 1, 2, 2, 1, 3)
DATA$Rater5 <- c(5, 3, 4, 3, 3, 1, 2, 2, 1, 4)
DATA$Rater6 <- c(5, 3, 4, 3, 3, 1, 3, 2, 1, 4)
DATA$Rater7 <- c(5, 3, 4, 3, 3, 1, 3, 2, 2, 4)
DATA$Rater8 <- c(5, 3, 4, 3, 3, 2, 3, 3, 2, 5)
DATA$Rater9 <- c(5, 4, 5, 3, 3, 2, 3, 3, 2, 5)
DATA$Rater10 <- c(5, 4, 5, 3, 3, 2, 3, 3, 2, 5)
DATA$Rater11 <- c(5, 4, 5, 3, 3, 2, 3, 4, 2, 5)
DATA$Rater12 <- c(5, 4, 5, 3, 3, 2, 4, 4, 3, 5)
DATA$Rater13 <- c(5, 5, 5, 4, 4, 2, 4, 5, 3, 5)
DATA$Rater14 <- c(5, 5, 5, 4, 5, 2, 4, 5, 4, 5)
library("irr")
kappam.fleiss(DATA)
TABLE <- matrix(rep(0, 50), nrow = 10)
for (COLUMN in 1:5) {
for (ROW in 1:10) {
TABLE[ROW, COLUMN] <- sum(DATA[ROW,] == COLUMN)
}
}
library(raters)
concordance(db = TABLE, test="Normal")