OSM 数据以 PBF 格式提供。有专门的库(例如用于解析此数据的https://github.com/plasmap/geow )。
我想将此数据存储在 S3 上并将数据解析为 RDD,作为 EMR 作业的一部分。
实现这一目标的直接方法是什么?我可以将文件提取到主节点并在本地处理吗?如果是这样,我是否会创建一个空的 RDD 并将其添加到从输入文件中解析流事件时?
OSM 数据以 PBF 格式提供。有专门的库(例如用于解析此数据的https://github.com/plasmap/geow )。
我想将此数据存储在 S3 上并将数据解析为 RDD,作为 EMR 作业的一部分。
实现这一目标的直接方法是什么?我可以将文件提取到主节点并在本地处理吗?如果是这样,我是否会创建一个空的 RDD 并将其添加到从输入文件中解析流事件时?
一种解决方案是跳过 PBF。一种对 Spark 友好的表示是 Parquet。在这篇博文中,展示了如何将 PBF 转换为 Parquet 以及如何在 Spark 中加载数据。
我发布了一个新版本的Osm4Scala,其中包括对Spark 2 和 3的支持。
README.md 中有很多例子
使用起来非常简单:
scala> val osmDF = spark.sqlContext.read.format("osm.pbf").load("<osm files path here>")
osmDF: org.apache.spark.sql.DataFrame = [id: bigint, type: tinyint ... 5 more fields]
scala> osmDF.createOrReplaceTempView("osm")
scala> spark.sql("select type, count(*) as num_primitives from osm group by type").show()
+----+--------------+
|type|num_primitives|
+----+--------------+
| 1| 338795|
| 2| 10357|
| 0| 2328075|
+----+--------------+
scala> spark.sql("select distinct(explode(map_keys(tags))) as tag_key from osm order by tag_key asc").show()
+------------------+
| tag_key|
+------------------+
| Calle|
| Conference|
| Exper|
| FIXME|
| ISO3166-1|
| ISO3166-1:alpha2|
| ISO3166-1:alpha3|
| ISO3166-1:numeric|
| ISO3166-2|
| MAC_dec|
| Nombre|
| Numero|
| Open|
| Peluqueria|
| Residencia UEM|
| Telefono|
| abandoned|
| abandoned:amenity|
| abandoned:barrier|
|abandoned:building|
+------------------+
only showing top 20 rows
scala> spark.sql("select id, latitude, longitude, tags from osm where type = 0").show()
+--------+------------------+-------------------+--------------------+
| id| latitude| longitude| tags|
+--------+------------------+-------------------+--------------------+
| 171933| 40.42006|-3.7016600000000004| []|
| 171946| 40.42125|-3.6844500000000004|[highway -> traff...|
| 171948|40.420230000000004|-3.6877900000000006| []|
| 171951|40.417350000000006|-3.6889800000000004| []|
| 171952| 40.41499|-3.6889800000000004| []|
| 171953| 40.41277|-3.6889000000000003| []|
| 171954| 40.40946|-3.6887900000000005| []|
| 171959| 40.40326|-3.7012200000000006| []|
|20952874| 40.42099|-3.6019200000000007| []|
|20952875|40.422610000000006|-3.5994900000000007| []|
|20952878| 40.42136000000001| -3.601470000000001| []|
|20952879| 40.42262000000001| -3.599770000000001| []|
|20952881| 40.42905000000001|-3.5970500000000007| []|
|20952883| 40.43131000000001|-3.5961000000000007| []|
|20952888| 40.42930000000001| -3.596590000000001| []|
|20952890| 40.43012000000001|-3.5961500000000006| []|
|20952891| 40.43043000000001|-3.5963600000000007| []|
|20952892| 40.43057000000001|-3.5969100000000007| []|
|20952893| 40.43039000000001|-3.5973200000000007| []|
|20952895| 40.42967000000001|-3.5972300000000006| []|
+--------+------------------+-------------------+--------------------+
only showing top 20 rows
您绝对应该看看 Atlas 项目(用 Java 编写):https ://github.com/osmlab/atlas和https://github.com/osmlab/atlas-generator。它由 Apple 的开发人员构建,允许使用 Spark 对 osm.pbf 文件进行分布式处理。