我带着一个关于 asyncio 的问题回来了。我发现它非常有用(尤其是由于带有线程的 GIL),并且我正在尝试提高某些代码的性能。
我的应用程序正在执行以下操作:
- 1 后台守护线程“A”从连接的客户端接收事件,并通过填充 SetQueue(即删除重复 ID 的事件队列)和在 DB 中进行一些插入来做出反应。我从另一个模块得到这个守护进程(基本上我控制从收到事件时的回调)。在下面的示例代码中,我将其替换为我生成的线程,它非常简单地用 20 个项目填充队列并在退出之前模拟 DB 插入。
1 后台守护线程“B”被启动(loop_start),他只是循环运行直到完成一个协程:
- 获取队列中的所有项目(如果不为空,否则释放控制 x 秒,然后重新启动协程)
对于队列中的每个 id,它会启动一个链式协程,该协程:
创建并等待仅从数据库中获取该 ID 的所有相关信息的任务。我正在使用支持异步的 MotorClient 在任务本身中等待。
使用进程池执行程序启动每个 id 的进程,该进程使用 DB 数据执行一些 CPU 密集型处理。
主线程只是初始化 db_client 并接受 loop_start 和 stop 命令。
基本上就是这样。
现在我正在尝试尽可能提高性能。
我目前的问题是以motor.motor_asyncio.AsyncioMotorClient()
这种方式使用:
- 它在主线程中初始化,我想在那里创建索引
- 线程“A”需要执行数据库插入
- 线程“B”需要执行 DB 查找/读取
我怎样才能做到这一点?Motor 声明它适用于单线程应用程序,您显然使用单个事件循环。在这里,我发现自己被迫有两个事件循环,一个在线程“A”中,一个在线程“B”中。这不是最佳的,但我没有设法在 call_soon_threadsafe 中使用单个事件循环,同时保持相同的行为......而且我认为性能方面我仍然通过两个释放对 gil 绑定 cpu 核心的控制的事件循环获得很多.
我应该使用三个不同的 AsyncioMotorClient 实例(每个线程一个)并如上所述使用它们吗?我在尝试时因不同的错误而失败。
这是我的示例代码,它不只包括异步中的 MotorClient 初始化__init__
import threading
import asyncio
import concurrent.futures
import functools
import os
import time
import logging
from random import randint
from queue import Queue
# create logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('{}.log'.format(__name__))
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(processName)s - %(threadName)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)
class SetQueue(Queue):
"""Queue that avoids duplicate entries while keeping an order."""
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = set()
def _put(self, item):
if type(item) is not int:
raise TypeError
self.queue.add(item)
def _get(self):
# Get always all items in a thread-safe manner
ret = self.queue.copy()
self.queue.clear()
return ret
class Asynchro:
def __init__(self, event_queue):
self.__daemon = None
self.__daemon_terminate = False
self.__queue = event_queue
def fake_populate(self, size):
t = threading.Thread(target=self.worker, args=(size,))
t.daemon = True
t.start()
def worker(self, size):
run = True
populate_event_loop = asyncio.new_event_loop()
asyncio.set_event_loop(populate_event_loop)
cors = [self.worker_cor(i, populate_event_loop) for i in range(size)]
done, pending = populate_event_loop.run_until_complete(asyncio.wait(cors))
logger.debug('Finished to populate event queue with result done={}, pending={}.'.format(done, pending))
while run:
# Keep it alive to simulate something still alive (minor traffic)
time.sleep(5)
rand = randint(100, 200)
populate_event_loop.run_until_complete(self.worker_cor(rand, populate_event_loop))
if self.__daemon_terminate:
logger.debug('Closed the populate_event_loop.')
populate_event_loop.close()
run = False
async def worker_cor(self, i, loop):
time.sleep(0.5)
self.__queue.put(i)
logger.debug('Wrote {} in the event queue that has now size {}.'.format(i, self.__queue.qsize()))
# Launch fake DB Insertions
#db_task = loop.create_task(self.fake_db_insert(i))
db_data = await self.fake_db_insert(i)
logger.info('Finished to populate with id {}'.format(i))
return db_data
@staticmethod
async def fake_db_insert(item):
# Fake some DB insert
logger.debug('Starting fake db insertion with id {}'.format(item))
st = randint(1, 101) / 100
await asyncio.sleep(st)
logger.debug('Finished db insertion with id {}, sleep {}'.format(item, st))
return item
def loop_start(self):
logger.info('Starting the loop.')
if self.__daemon is not None:
raise Exception
self.__daemon_terminate = False
self.__daemon = threading.Thread(target=self.__daemon_main)
self.__daemon.daemon = True
self.__daemon.start()
def loop_stop(self):
logger.info('Stopping the loop.')
if self.__daemon is None:
raise Exception
self.__daemon_terminate = True
if threading.current_thread() != self.__daemon:
self.__daemon.join()
self.__daemon = None
logger.debug('Stopped the loop and closed the event_loop.')
def __daemon_main(self):
logger.info('Background daemon started (inside __daemon_main).')
event_loop = asyncio.new_event_loop()
asyncio.set_event_loop(event_loop)
run, rc = True, 0
while run:
logger.info('Inside \"while run\".')
event_loop.run_until_complete(self.__cor_main())
if self.__daemon_terminate:
event_loop.close()
run = False
rc = 1
return rc
async def __cor_main(self):
# If nothing in the queue release control for a bit
if self.__queue.qsize() == 0:
logger.info('Event queue is empty, going to sleep (inside __cor_main).')
await asyncio.sleep(10)
return
# Extract all items from event queue
items = self.__queue.get()
# Run asynchronously DB extraction and processing on the ids (using pool of processes)
with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor:
cors = [self.__cor_process(item, executor) for item in items]
logger.debug('Launching {} coroutines to elaborate queue items (inside __cor_main).'.format(len(items)))
done, pending = await asyncio.wait(cors)
logger.debug('Finished to execute __cor_main with result {}, pending {}'
.format([t.result() for t in done], pending))
async def __cor_process(self, item, executor):
# Extract corresponding DB data
event_loop = asyncio.get_event_loop()
db_task = event_loop.create_task(self.fake_db_access(item))
db_data = await db_task
# Heavy processing of data done in different processes
logger.debug('Launching processes to elaborate db_data.')
res = await event_loop.run_in_executor(executor, functools.partial(self.fake_processing, db_data, None))
return res
@staticmethod
async def fake_db_access(item):
# Fake some db access
logger.debug('Starting fake db access with id {}'.format(item))
st = randint(1, 301) / 100
await asyncio.sleep(st)
logger.debug('Finished db access with id {}, sleep {}'.format(item, st))
return item
@staticmethod
def fake_processing(db_data, _):
# fake some CPU processing
logger.debug('Starting fake processing with data {}'.format(db_data))
st = randint(1, 101) / 10
time.sleep(st)
logger.debug('Finished fake processing with data {}, sleep {}, process id {}'.format(db_data, st, os.getpid()))
return db_data
def main():
# Event queue
queue = SetQueue()
return Asynchro(event_queue=queue)
if __name__ == '__main__':
a = main()
a.fake_populate(20)
time.sleep(5)
a.loop_start()
time.sleep(20)
a.loop_stop()