2

我在远程服务器(Microsoft azure)上运行一个 spark(2.0.1)独立集群。我能够将我的 spark 应用程序连接到这个集群,但是任务在没有任何执行的情况下被卡住(带有以下警告 WARN org.apache.spark.scheduler.TaskSchedulerImpl - Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources:)

我试过的:

  1. 我已确保我的应用程序的内存、cpu 要求不超过服务器配置。

  2. 已将这些变量提供给我的spark-env.shSPARK_PUBLIC_DNS ,SPARK_DRIVER_HOST, SPARK_LOCAL_IP, SPARK_MASTER_HOST

  3. 可以在浏览器上看到master/worker/application webui。
  4. 在远程服务器上打开所有端口(对于我的 IP 和 vpn)。
  5. 已禁用ufw

据我所知,我的工人无法向主人转达。执行程序在 120 秒后超时,使用以下标准错误:

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/11/19 18:15:09 INFO CoarseGrainedExecutorBackend: Started daemon with process name: 17261@sparkmasternew
16/11/19 18:15:09 INFO SignalUtils: Registered signal handler for TERM
16/11/19 18:15:09 INFO SignalUtils: Registered signal handler for HUP
16/11/19 18:15:09 INFO SignalUtils: Registered signal handler for INT
16/11/19 18:15:10 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/19 18:15:10 INFO SecurityManager: Changing view acls to: ubuntu,user1
16/11/19 18:15:10 INFO SecurityManager: Changing modify acls to: ubuntu,user1
16/11/19 18:15:10 INFO SecurityManager: Changing view acls groups to: 
16/11/19 18:15:10 INFO SecurityManager: Changing modify acls groups to: 
16/11/19 18:15:10 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(ubuntu, user1); groups with view permissions: Set(); users  with modify permissions: Set(ubuntu, user1); groups with modify permissions: Set()
java.lang.IllegalArgumentException: requirement failed: TransportClient has not yet been set.
    at scala.Predef$.require(Predef.scala:224)
    at org.apache.spark.rpc.netty.RpcOutboxMessage.onTimeout(Outbox.scala:70)
    at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$ask$1.applyOrElse(NettyRpcEnv.scala:232)
    at org.apache.spark.rpc.netty.NettyRpcEnv$$anonfun$ask$1.applyOrElse(NettyRpcEnv.scala:231)
    at scala.concurrent.Future$$anonfun$onFailure$1.apply(Future.scala:138)
    at scala.concurrent.Future$$anonfun$onFailure$1.apply(Future.scala:136)
    at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    at org.spark_project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
    at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:136)
    at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
    at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
    at org.apache.spark.rpc.netty.NettyRpcEnv.org$apache$spark$rpc$netty$NettyRpcEnv$$onFailure$1(NettyRpcEnv.scala:205)
    at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:239)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
    at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:70)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$.run(CoarseGrainedExecutorBackend.scala:174)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$.main(CoarseGrainedExecutorBackend.scala:270)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend.main(CoarseGrainedExecutorBackend.scala)
Caused by: org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
    at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
    at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
    at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
    at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:216)
    at scala.util.Try$.apply(Try.scala:192)
    at scala.util.Failure.recover(Try.scala:216)
    at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:326)
    at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:326)
    at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    at org.spark_project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
    at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:136)
    at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    at scala.concurrent.Promise$class.complete(Promise.scala:55)
    at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
    at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:237)
    at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:237)
    at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
    at scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.processBatch$1(BatchingExecutor.scala:63)
    at scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply$mcV$sp(BatchingExecutor.scala:78)
    at scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55)
    at scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55)
    at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
    at scala.concurrent.BatchingExecutor$Batch.run(BatchingExecutor.scala:54)
    at scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:601)
    at scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:106)
    at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:599)
    at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
    at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
    at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
    at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
    at org.apache.spark.rpc.netty.NettyRpcEnv.org$apache$spark$rpc$netty$NettyRpcEnv$$onFailure$1(NettyRpcEnv.scala:205)
    at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:239)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
    ... 8 more

我正在使用我的 vm 的私有 IPSPARK_DRIVER_HOST, SPARK_LOCAL_IP, SPARK_MASTER_HOST和公共 IP 作为SPARK_PUBLIC_DNS并连接到主服务器。master 和 worker 在同一个虚拟机上运行。这个确切的设置正在一个 ec2 实例上运行。任何帮助,将不胜感激。

更新:我可以在机器内正常运行 spark-shell。问题似乎与类似 执行程序无法与驱动程序交互,尽管我在 vm 上打开了端口。有没有办法将驱动程序绑定到我的实例/笔记本电脑的公共 IP?

4

0 回答 0