有人可以帮助我对加载到 TensorFlow Serving 的 model_server 中的 TensorFlow 的 Wide and Deep Learning 模型进行预测吗?
如果有人可以向我指出相同的资源或文档,那将非常有帮助。
有人可以帮助我对加载到 TensorFlow Serving 的 model_server 中的 TensorFlow 的 Wide and Deep Learning 模型进行预测吗?
如果有人可以向我指出相同的资源或文档,那将非常有帮助。
您可以尝试调用估计器的 predict 方法并将 as_iterable 设置为 false 的 ndarray
y = m.predict(input_fn=lambda: input_fn(df_test), as_iterable=False)
但是,请注意此处的弃用说明,以便将来兼容。
如果您的模型是使用导出的Estimator.export_savedmodel()
并且您成功构建了 TensorFlow Serving 本身,您可以执行以下操作:
from grpc.beta import implementations
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
tf.app.flags.DEFINE_string('server', 'localhost:9000', 'Server host:port.')
tf.app.flags.DEFINE_string('model', 'wide_and_deep', 'Model name.')
FLAGS = tf.app.flags.FLAGS
...
def main(_):
host, port = FLAGS.server.split(':')
# Set up a connection to the TF Model Server
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# Create a request that will be sent for an inference
request = predict_pb2.PredictRequest()
request.model_spec.name = FLAGS.model
request.model_spec.signature_name = 'serving_default'
# A single tf.Example that will get serialized and turned into a TensorProto
feature_dict = {'age': _float_feature(value=25),
'capital_gain': _float_feature(value=0),
'capital_loss': _float_feature(value=0),
'education': _bytes_feature(value='11th'.encode()),
'education_num': _float_feature(value=7),
'gender': _bytes_feature(value='Male'.encode()),
'hours_per_week': _float_feature(value=40),
'native_country': _bytes_feature(value='United-States'.encode()),
'occupation': _bytes_feature(value='Machine-op-inspct'.encode()),
'relationship': _bytes_feature(value='Own-child'.encode()),
'workclass': _bytes_feature(value='Private'.encode())}
label = 0
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
serialized = example.SerializeToString()
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(serialized, shape=[1]))
# Create a future result, and set 5 seconds timeout
result_future = stub.Predict.future(request, 5.0)
prediction = result_future.result().outputs['scores']
print('True label: ' + str(label))
print('Prediction: ' + str(np.argmax(prediction)))
在这里,我写了一个简单的教程Exporting and Serving a TensorFlow Wide & Deep Model,其中包含更多细节。
希望能帮助到你。