我正在定义一个函数 Heiken Ashi,它是技术分析中流行的图表类型之一。我正在使用 Pandas 在其上编写一个函数,但发现没有什么困难。这就是 Heiken Ashi [HA] 的样子——
Heikin-Ashi Candle Calculations
HA_Close = (Open + High + Low + Close) / 4
HA_Open = (previous HA_Open + previous HA_Close) / 2
HA_Low = minimum of Low, HA_Open, and HA_Close
HA_High = maximum of High, HA_Open, and HA_Close
Heikin-Ashi Calculations on First Run
HA_Close = (Open + High + Low + Close) / 4
HA_Open = (Open + Close) / 2
HA_Low = Low
HA_High = High
使用 for 循环和纯 python 的各种网站上有很多可用的东西,但我认为 Pandas 也可以做得很好。这是我的进步——
def HA(df):
df['HA_Close']=(df['Open']+ df['High']+ df['Low']+ df['Close'])/4
ha_o=df['Open']+df['Close'] #Creating a Variable
#(for 1st row)
HA_O=df['HA_Open'].shift(1)+df['HA_Close'].shift(1) #Another variable
#(for subsequent rows)
df['HA_Open']=[ha_o/2 if df['HA_Open']='nan' else HA_O/2]
#(error Part Where am i going wrong?)
df['HA_High']=df[['HA_Open','HA_Close','High']].max(axis=1)
df['HA_Low']=df[['HA_Open','HA_Close','Low']].min(axis=1)
return df
任何人都可以帮我解决这个问题吗?`它不起作用......我试过这个 -
import pandas_datareader.data as web
import HA
import pandas as pd
start='2016-1-1'
end='2016-10-30'
DAX=web.DataReader('^GDAXI','yahoo',start,end)
这是我写的新代码
def HA(df):
df['HA_Close']=(df['Open']+ df['High']+ df['Low']+df['Close'])/4
...: ha_o=df['Open']+df['Close']
...: df['HA_Open']=0.0
...: HA_O=df['HA_Open'].shift(1)+df['HA_Close'].shift(1)
...: df['HA_Open']= np.where( df['HA_Open']==np.nan, ha_o/2, HA_O/2 )
...: df['HA_High']=df[['HA_Open','HA_Close','High']].max(axis=1)
...: df['HA_Low']=df[['HA_Open','HA_Close','Low']].min(axis=1)
...: return df
但 HA_Open 的结果仍然不能令人满意