我必须使用来自 json 文件的信息创建一个自定义 org.apache.spark.sql.types.StructType 模式对象,json 文件可以是任何东西,所以我在属性文件中对其进行了参数化。
这是属性文件的外观:
//ruta al esquema del fichero output (por defecto se infiere el esquema del Parquet destino). Si existe, el esquema será en formato JSON, aplicable a DataFrame (ver StructType.fromJson)
schema.parquet=/Users/XXXX/Desktop/generated_schema.json
writing.mode=overwrite
separator=;
header=false
文件 generated_schema.json 看起来像:
{"type" : "struct","fields" : [ {"name" : "codigo","type" : "string","nullable" : true}, {"name":"otro", "type":"string", "nullable":true}, {"name":"vacio", "type":"string", "nullable":true},{"name":"final","type":"string","nullable":true} ]}
所以,这就是我认为我可以解决的方法:
val path: Path = new Path(mra_schema_parquet)
val fileSystem = path.getFileSystem(sc.hadoopConfiguration)
val inputStream: FSDataInputStream = fileSystem.open(path)
val schema_json = Stream.cons(inputStream.readLine(), Stream.continually( inputStream.readLine))
System.out.println("schema_json looks like " + schema_json.head)
val mySchemaStructType :DataType = DataType.fromJson(schema_json.head)
/*
After this line, mySchemaStructType have four StructFields objects inside it, the same than appears at schema_json
*/
logger.info(mySchemaStructType)
val myStructType = new StructType()
myStructType.add("mySchemaStructType",mySchemaStructType)
/*
After this line, myStructType have zero StructFields! here must be the bug, myStructType should have the four StructFields that represents the loaded schema json! this must be the error! but how can i construct the necessary StructType object?
*/
myDF = loadCSV(sqlContext, path_input_csv,separator,myStructType,header)
System.out.println("myDF.schema.json looks like " + myDF.schema.json)
inputStream.close()
df.write
.format("com.databricks.spark.csv")
.option("header", header)
.option("delimiter",delimiter)
.option("nullValue","")
.option("treatEmptyValuesAsNulls","true")
.mode(saveMode)
.parquet(pathParquet)
当代码运行最后一行 .parquet(pathParquet) 时,会发生异常:
**parquet.schema.InvalidSchemaException: Cannot write a schema with an empty group: message root {
}**
这段代码的输出是这样的:
16/11/11 13:57:04 INFO AnotherCSVtoParquet$: The job started using this propertie file: /Users/aisidoro/Desktop/mra-csv-converter/parametrizacion.properties
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: path_input_csv is /Users/aisidoro/Desktop/mra-csv-converter/cds_glcs.csv
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: path_output_parquet is /Users/aisidoro/Desktop/output900000
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: mra_schema_parquet is /Users/aisidoro/Desktop/mra-csv-converter/generated_schema.json
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: writting_mode is overwrite
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: separator is ;
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: header is false
16/11/11 13:57:05 INFO AnotherCSVtoParquet$: ATTENTION! aplying mra_schema_parquet /Users/aisidoro/Desktop/mra-csv-converter/generated_schema.json
schema_json looks like {"type" : "struct","fields" : [ {"name" : "codigo","type" : "string","nullable" : true}, {"name":"otro", "type":"string", "nullable":true}, {"name":"vacio", "type":"string", "nullable":true},{"name":"final","type":"string","nullable":true} ]}
16/11/11 13:57:12 INFO AnotherCSVtoParquet$: StructType(StructField(codigo,StringType,true), StructField(otro,StringType,true), StructField(vacio,StringType,true), StructField(final,StringType,true))
16/11/11 13:57:13 INFO AnotherCSVtoParquet$: loadCSV. header is false, inferSchema is false pathCSV is /Users/aisidoro/Desktop/mra-csv-converter/cds_glcs.csv separator is ;
myDF.schema.json looks like {"type":"struct","fields":[]}
应该是 schema_json 对象和 myDF.schema.json 对象应该具有相同的内容,不是吗?但它没有发生。我认为这必须启动错误。
最后,这项工作因这个例外而崩溃:
**parquet.schema.InvalidSchemaException: Cannot write a schema with an empty group: message root {
}**
事实是,如果我不提供任何 json 模式文件,则作业执行良好,但是使用此模式...
有谁能够帮我?我只想从 csv 文件和 json 模式文件开始创建一些镶木地板文件。
谢谢你。
依赖项是:
<spark.version>1.5.0-cdh5.5.2</spark.version>
<databricks.version>1.5.0</databricks.version>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>${databricks.version}</version>
</dependency>
更新
我可以看到有一个未解决的问题,