我需要训练 Spacy NER 以便能够识别 2 个用于命名实体识别的新类,我所拥有的只是包含应该在新类中的项目列表的文件。
例如:Rolling Stones、Muse、Arctic Monkeys - 艺术家 知道如何做到这一点吗?
我需要训练 Spacy NER 以便能够识别 2 个用于命名实体识别的新类,我所拥有的只是包含应该在新类中的项目列表的文件。
例如:Rolling Stones、Muse、Arctic Monkeys - 艺术家 知道如何做到这一点吗?
这似乎是Matcher或PhraseMatcher的完美用例(如果您关心性能)。
import spacy
nlp = spacy.load('en')
def merge_phrases(matcher, doc, i, matches):
'''
Merge a phrase. We have to be careful here because we'll change the token indices.
To avoid problems, merge all the phrases once we're called on the last match.
'''
if i != len(matches)-1:
return None
spans = [(ent_id, label, doc[start : end]) for ent_id, label, start, end in matches]
for ent_id, label, span in spans:
span.merge('NNP' if label else span.root.tag_, span.text, nlp.vocab.strings[label])
matcher = spacy.matcher.Matcher(nlp.vocab)
matcher.add(entity_key='1', label='ARTIST', attrs={}, specs=[[{spacy.attrs.ORTH: 'Rolling'}, {spacy.attrs.ORTH: 'Stones'}]], on_match=merge_phrases)
matcher.add(entity_key='2', label='ARTIST', attrs={}, specs=[[{spacy.attrs.ORTH: 'Muse'}]], on_match=merge_phrases)
matcher.add(entity_key='3', label='ARTIST', attrs={}, specs=[[{spacy.attrs.ORTH: 'Arctic'}, {spacy.attrs.ORTH: 'Monkeys'}]], on_match=merge_phrases)
doc = nlp(u'The Rolling Stones are an English rock band formed in London in 1962. The first settled line-up consisted of Brian Jones, Ian Stewart, Mick Jagger, Keith Richards, Bill Wyman and Charlie Watts')
matcher(doc)
for ent in doc.ents:
print(ent)
有关更多详细信息,请参阅文档。根据我的经验,匹配器中有 400k 个实体,匹配每个文档几乎需要一秒钟。PhraseMatcher 要快得多,但使用起来有点棘手。请注意,这是“严格”匹配器,它不会匹配它以前从未见过的任何实体。