我正在从 quandl.com 下载财务数据集的元数据。quandl.com 的数据已经是字典格式。我想从 quandl.com 获取这些数据并将其组织到 DataFrame 中,然后将其导入 Excel。
这是文本文件('Indicator_list.txt'),其中包含我从 quandl.com 下载的金融数据集列表。我希望将这些符号中的每一个的元数据组织成一个 DataFrame。
COM/OIL_WTI
BOE/XUDLADS
BOE/XUDLADD
BOE/XUDLB8KL
BOE/XUDLCDS
BOE/XUDLCDD
这是我正在运行的代码
import quandl
import pandas as pd
#This adjusts the layout in the command
#promt to have columns displayed side by side
pd.set_option('expand_frame_repr', False)
#This "with open" statment opens a text file that
#has the symbols I want to get the metadata on
with open ('Indicator_list.txt') as file_object:
Current_indicators = file_object.read()
tickers = Current_indicators.split('\n')
#quandlmetadata is a blank dictionary that I am
#appending the meatadata to
quandlmetadata={}
#this loops through all the values in
#Indicator_list.txt"
for i in tickers:
#metadata represents one set of metadata
metadata = quandl.Dataset(i).data().meta
这是来自 quandl.com 的元数据的输出
{'start_date': datetime.date(1975, 1, 2), 'column_names': ['Date', 'Value'], 'limit': None, 'collapse': None, 'order': 'asc', 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'column_index': None, 'frequency': 'daily'}
接下来,我将其添加到 quandlmetadata 字典中,并使用 indicator_list.txt " i " 中的当前符号来命名字典的键。
quandlmetadata[i]=(metadata)
这是 quandlmetadata 的输出
{'BOE/XUDLADS': {'column_names': ['Date', 'Value'], 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(1975, 1, 2), 'limit': None, 'column_index': None, 'frequency': 'daily'}, 'BOE/XUDLCDD': {'column_names': ['Date', 'Value'], 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(1975, 1, 2), 'limit': None, 'column_index': None, 'frequency': 'daily'}, 'BOE/XUDLB8KL': {'column_names': ['Date', 'Value'], 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(2011, 8, 1), 'limit': None, 'column_index': None, 'frequency': 'daily'}, 'COM/OIL_WTI': {'column_names': ['date', 'value'], 'end_date': datetime.date(2016, 11, 4), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(1983, 3, 30), 'limit': None, 'column_index': None, 'frequency': 'daily'}, 'BOE/XUDLADD': {'column_names': ['Date', 'Value'], 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(1975, 1, 2), 'limit': None, 'column_index': None, 'frequency': 'daily'}, 'BOE/XUDLCDS': {'column_names': ['Date', 'Value'], 'end_date': datetime.date(2016, 11, 3), 'transform': None, 'collapse': None, 'order': 'asc', 'start_date': datetime.date(1975, 1, 2), 'limit': None, 'column_index': None, 'frequency': 'daily'}}
最后我想让 quandlmetadata 字典变成一个数据框(或其他更好的方式)
这是代码的最后一部分
df = pd.DataFrame(index = quandlmetadata.keys(),columns =['transform', 'frequency', 'limit', 'end_date', 'collapse', 'column_names','start_date', 'order', 'column_index'] )
df 的输出
transform frequency limit end_date collapse column_names start_date order column_index
BOE/XUDLB8KL NaN NaN NaN NaN NaN NaN NaN NaN NaN
BOE/XUDLADS NaN NaN NaN NaN NaN NaN NaN NaN NaN
BOE/XUDLADD NaN NaN NaN NaN NaN NaN NaN NaN NaN
BOE/XUDLCDS NaN NaN NaN NaN NaN NaN NaN NaN NaN
COM/OIL_WTI NaN NaN NaN NaN NaN NaN NaN NaN NaN
BOE/XUDLCDD NaN NaN NaN NaN NaN NaN NaN NaN NaN
df 的输出正是我想要的;Indicator_list.txt 中的代码是我的索引,列是 metadata.keys()。我唯一不能开始工作的是用 quandlmetadata 字典值填充 DataFrame 的行。最终目标是能够将此列表导入到 excel 中,因此如果有办法在不使用数据框的情况下执行此操作,我将对此持开放态度。