我试图通过查看 Codility 的前缀和课程中提供的示例来掌握前缀和概念背后的想法(蘑菇选择器问题)
我的理解是,整个概念基于一个简单的属性,其中要找到数组 A 的两个位置 A(pos_left, pos_right) 之间的所有元素的总和,使用第二个数组 P,其中所有元素连续求和,搜索的位置总和计算为
value(P(pos_right + 1)) - value(P(pos_left))。
A 1 2 3 4 5 6
P 0 1 3 6 10 15 21
sum of all elements between A[2] and A[5] = 3+ 4 + 5 = 12
or using the prefix sums" P[5+1] - P[2] = 15 -3 = 12
问题
非空向量表示的每个地方都有一条蘑菇街。给定拾取器的初始位置及其移动范围,寻找可能收集的最大蘑菇数量。
看这个例子,我不明白循环构造背后的逻辑。任何人都可以澄清这个算法的机制吗?
其次,我发现这个例子中的 positoin 索引非常混乱和麻烦。在开头用零“移位”带有前缀和的向量是常见的做法吗?(在 python 中,向量中的元素计数是从 0 开始的,这一事实已经引起了一些混乱)。
解决方案
def prefix_sums(A):
n = len(A)
P = [0] * (n + 1)
for k in xrange(1, n + 1):
P[k] = P[k - 1] + A[k - 1]
return P
def count_total(P, x, y):
return P[y + 1] - P[x]
# A mushroom picker is at spot number k on the road and should perform m moves
def mushrooms(A, k, m):
n = len(A)
result = 0
pref = prefix_sums(A)
for p in xrange(min(m, k) + 1): # going left
left_pos = k - p
right_pos = min(n - 1, max(k, k + m - 2 * p))
result = max(result, count_total(pref, left_pos, right_pos))
for p in xrange(min(m + 1, n - k)):
right_pos = k + p
left_pos = max(0, min(k, k - (m - 2 * p)))
result = max(result, count_total(pref, left_pos, right_pos))
return result
我已经为一个小数组运行了一些示例A= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
,选择了位置 k=5 和范围 m = 3。我不明白创建要通过两个循环检查的范围的逻辑。
我得到以下循环参数
(p=, left_pos=, right_pos=)
loop 1 (0,5,8), (1,4,6),(2,3,5),(3,2,5)
loop 2 (0,2,5), (1,4,6), (2,5,7), (3,5,8)
范围各不相同。为什么?
调试版本
def mushrooms2(A, k, m):
n = len(A)
result = 0
pref = prefix_sums(A)
l1 =min(m, k) + 1
print 'loop p in xrange(min(m, k) + 1): %d' % l1
for p in xrange(min(m, k) + 1):
print 'p %d' % p
print 'A= %r' % A
print 'pref= %r' % pref
left_pos = k - p
right_pos = min(n - 1, max(k, k + m - 2 * p))
result = max(result, count_total(pref, left_pos, right_pos))
print 'left_pos = k - p= %d' % left_pos
print 'right_pos= min(n-1,max(k,k+m-2*p))= %d' % right_pos
print 'max'
print '(result %d' % result
print 'count_total(pref, left_pos, right_pos)) %r, %r, %r, %r' % (pref,left_pos, right_pos,count_total(pref, left_pos, right_pos))
print 'result= %d' % result
print 'next p'
l2=min(m + 1, n - k)
print 'loop xrange(min(m + 1, n - k)): %d' % l2
for p in xrange(min(m + 1, n - k)):
print 'p %d' % p
print 'A= %r' % A
print 'pref= %r' % pref
right_pos = k + p
left_pos = max(0, min(k, k - (m - 2 * p)))
result = max(result, count_total(pref, left_pos, right_pos))
print 'right_pos = k + p= %d' % right_pos
print 'left_pos = max(0, min(k, k - (m - 2 * p)))= %d' % left_pos
print 'max'
print '(result %d' % result
print 'count_total(pref, left_pos, right_pos)) %r, %r, %r, %r' % (pref,left_pos, right_pos,count_total(pref, left_pos, right_pos))
print 'result= %d' % result
print 'next p'
print 'result %d' % result
return result