在 spark2.0 中,我有两个数据框,我需要先加入它们并执行 reduceByKey 来聚合数据。我总是在 executor 中得到 OOM。提前致谢。
数据
d1(1G,5亿行,缓存,按col id2分区)
id1 id2
1 1
1 3
1 4
2 0
2 7
...
d2(160G,200万行,缓存,按col id2分区,值col包含5000个浮点数的列表)
id2 value
0 [0.1, 0.2, 0.0001, ...]
1 [0.001, 0.7, 0.0002, ...]
...
现在我需要加入这两个表来获取 d3 并且我使用 spark.sql
select d1.id1, d2.value
FROM d1 JOIN d2 ON d1.id2 = d2.id2
然后我在 d3 上执行reduceByKey并汇总表 d1 中每个 id1 的值
d4 = d3.rdd.reduceByKey(lambda x, y: numpy.add(x, y)) \
.mapValues(lambda x: (x / numpy.linalg.norm(x, 1)).toList)\
.toDF()
我估计d4的大小是340G。现在我在 r3.8xlarge 机器上使用来运行作业
mem: 244G
cpu: 64
Disk: 640G
问题
我玩了一些配置,但我总是在执行程序中得到 OOM。所以,问题是
是否可以在当前类型的机器上运行此作业?或者我应该只使用更大的机器(多大?)。但我记得我遇到过文章/博客说用相对较小的机器进行 TB 处理。
我应该做什么样的改进?例如火花配置,代码优化?
是否可以估计每个执行程序所需的内存量?
火花配置
我试过的一些 Spark 配置
配置1:
--verbose
--conf spark.sql.shuffle.partitions=200
--conf spark.dynamicAllocation.enabled=false
--conf spark.driver.maxResultSize=24G
--conf spark.shuffle.blockTransferService=nio
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M
--conf spark.rpc.message.maxSize=800
--conf "spark.executor.extraJavaOptions=-verbose:gc - XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:MetaspaceSize=100M"
--num-executors 4
--executor-memory 48G
--executor-cores 15
--driver-memory 24G
--driver-cores 3
配置2:
--verbose
--conf spark.sql.shuffle.partitions=10000
--conf spark.dynamicAllocation.enabled=false
--conf spark.driver.maxResultSize=24G
--conf spark.shuffle.blockTransferService=nio
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M
--conf spark.rpc.message.maxSize=800
--conf "spark.executor.extraJavaOptions=-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:MetaspaceSize=100M"
--num-executors 4
--executor-memory 48G
--executor-cores 15
--driver-memory 24G
--driver-cores 3
配置3:
--verbose
--conf spark.sql.shuffle.partitions=10000
--conf spark.dynamicAllocation.enabled=true
--conf spark.driver.maxResultSize=6G
--conf spark.shuffle.blockTransferService=nio
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M
--conf spark.rpc.message.maxSize=800
--conf "spark.executor.extraJavaOptions=-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:MetaspaceSize=100M"
--executor-memory 6G
--executor-cores 2
--driver-memory 6G
--driver-cores 3
配置4:
--verbose
--conf spark.sql.shuffle.partitions=20000
--conf spark.dynamicAllocation.enabled=false
--conf spark.driver.maxResultSize=6G
--conf spark.shuffle.blockTransferService=nio
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer
--conf spark.kryoserializer.buffer.max=2000M
--conf spark.rpc.message.maxSize=800
--conf "spark.executor.extraJavaOptions=-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:MetaspaceSize=100M"
--num-executors 13
--executor-memory 15G
--executor-cores 5
--driver-memory 13G
--driver-cores 5
错误
来自执行程序的 OOM Error1
ExecutorLostFailure (executor 14 exited caused by one of the running tasks) Reason: Container killed by YARN for exceeding memory limits. 9.1 GB of 9 GB physical memory used. Consider boosting spark.yarn.executor.memoryOverhead.
Heap
PSYoungGen total 1830400K, used 1401721K [0x0000000740000000, 0x00000007be900000, 0x00000007c0000000)
eden space 1588736K, 84% used [0x0000000740000000,0x0000000791e86980,0x00000007a0f80000)
from space 241664K, 24% used [0x00000007af600000,0x00000007b3057de8,0x00000007be200000)
to space 236032K, 0% used [0x00000007a0f80000,0x00000007a0f80000,0x00000007af600000)
ParOldGen total 4194304K, used 4075884K [0x0000000640000000, 0x0000000740000000, 0x0000000740000000)
object space 4194304K, 97% used [0x0000000640000000,0x0000000738c5b198,0x0000000740000000)
Metaspace used 59721K, capacity 60782K, committed 61056K, reserved 1101824K
class space used 7421K, capacity 7742K, committed 7808K, reserved 1048576K
来自执行程序的 OOM Error2
ExecutorLostFailure (executor 7 exited caused by one of the running tasks) Reason: Container marked as failed: container_1477662810360_0002_01_000008 on host: ip-172-18-9-130.ec2.internal. Exit status: 52. Diagnostics: Exception from container-launch.
Heap
PSYoungGen total 1968128K, used 1900544K [0x0000000740000000, 0x00000007c0000000, 0x00000007c0000000)
eden space 1900544K, 100% used [0x0000000740000000,0x00000007b4000000,0x00000007b4000000)
from space 67584K, 0% used [0x00000007b4000000,0x00000007b4000000,0x00000007b8200000)
to space 103936K, 0% used [0x00000007b9a80000,0x00000007b9a80000,0x00000007c0000000)
ParOldGen total 4194304K, used 4194183K [0x0000000640000000, 0x0000000740000000, 0x0000000740000000)
object space 4194304K, 99% used [0x0000000640000000,0x000000073ffe1f38,0x0000000740000000)
Metaspace used 59001K, capacity 59492K, committed 61056K, reserved 1101824K
class space used 7300K, capacity 7491K, committed 7808K, reserved 1048576K
来自容器的错误
16/10/28 14:33:21 ERROR CoarseGrainedExecutorBackend: RECEIVED SIGNAL TERM
16/10/28 14:33:26 ERROR Utils: Uncaught exception in thread stdout writer for python
java.lang.OutOfMemoryError: Java heap space
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.copy(UnsafeRow.java:504)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$doExecute$3$$anon$2.hasNext(WholeStageCodegenExec.scala:386)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:120)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:112)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:112)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:504)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:328)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1877)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:269)
16/10/28 14:33:36 ERROR Utils: Uncaught exception in thread driver-heartbeater
16/10/28 14:33:26 ERROR Utils: Uncaught exception in thread stdout writer for python
java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.lang.Double.valueOf(Double.java:519)
at org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.get(UnsafeArrayData.java:138)
at org.apache.spark.sql.catalyst.util.ArrayData.foreach(ArrayData.scala:135)
at org.apache.spark.sql.execution.python.EvaluatePython$.toJava(EvaluatePython.scala:64)
at org.apache.spark.sql.execution.python.EvaluatePython$.toJava(EvaluatePython.scala:57)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2517)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2517)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:121)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.next(SerDeUtil.scala:112)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:112)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:504)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:328)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1877)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:269)
16/10/28 14:33:43 ERROR SparkUncaughtExceptionHandler: [Container in shutdown] Uncaught exception in thread Thread[stdout writer for python,5,main]
更新 1
如果我按 id2 分区,看起来数据 d1 非常倾斜。结果,join会导致OOM。如果 d1 像我之前想的那样均匀分布,那么上面的配置应该可以工作。
更新 2
我发布了解决问题的尝试,以防有人也遇到类似问题。
尝试1
我的问题是,如果我按 id2 对 d1 进行分区,那么数据就会非常倾斜。因此,存在一些包含几乎所有 id1 的分区。因此,与 d2 的 JOIN 会导致 OOM 错误。为了缓解这样的问题,我首先从 id2 中识别出一个子集s
,如果按 id2 进行分区,它可能会导致这种倾斜的数据。然后我从 d2 创建一个 d5,包括 onlys
和 d6 从 d2 exclude s
。幸运的是,d5 的大小并不算大。所以,我可以用 d5 广播加入 d1。然后我加入 d1 和 d6。然后,我合并这两个结果并执行 reduceByKey。我非常接近解决问题。我没有继续这种方式,因为我的 d1 以后可能会变得更大。换句话说,这种方法对我来说并不是真正可扩展的
尝试2
幸运的是,d2 中的大多数值都非常小。根据我的应用程序,我可以安全地删除小值并将向量转换为 sparseVector 以显着减小 d2 的大小。完成此操作后,我将 d1 按 id1 分区并广播加入 d2(在删除小值之后)。当然,必须增加驱动程序内存以允许较大的广播变量。这对我有用,也适用于我的应用程序。