重塑会将您的 8x8 矩阵转换为可用作特征的一维向量。您需要重塑整个 X 向量,而不仅仅是那些训练数据,因为您将用于预测的向量需要具有相同的格式。
以下代码显示了如何:
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
digits = datasets.load_digits()
classifier = svm.SVC(gamma=0.4, C=100)
x, y = digits.images, digits.target
#only reshape X since its a 8x8 matrix and needs to be flattened
n_samples = len(digits.images)
x = x.reshape((n_samples, -1))
print("before reshape:" + str(digits.images[0]))
print("After reshape" + str(x[0]))
classifier.fit(x[:-2], y[:-2])
###
print('Prediction:', classifier.predict(x[-2]))
###
plt.imshow(digits.images[-2], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()
###
print('Prediction:', classifier.predict(x[-1]))
###
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()
它将输出:
before reshape:[[ 0. 0. 5. 13. 9. 1. 0. 0.]
[ 0. 0. 13. 15. 10. 15. 5. 0.]
[ 0. 3. 15. 2. 0. 11. 8. 0.]
[ 0. 4. 12. 0. 0. 8. 8. 0.]
[ 0. 5. 8. 0. 0. 9. 8. 0.]
[ 0. 4. 11. 0. 1. 12. 7. 0.]
[ 0. 2. 14. 5. 10. 12. 0. 0.]
[ 0. 0. 6. 13. 10. 0. 0. 0.]]
After reshape[ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5.
0. 0. 3. 15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8.
8. 0. 0. 5. 8. 0. 0. 9. 8. 0. 0. 4. 11. 0. 1.
12. 7. 0. 0. 2. 14. 5. 10. 12. 0. 0. 0. 0. 6. 13.
10. 0. 0. 0.]
以及对最后两张未用于训练的图像的正确预测 - 但是您可以决定在测试集和训练集之间进行更大的分割。