QF_NRA 中是否包含除以零?
SMT-LIB 标准在这件事上令人困惑。定义标准的论文根本没有讨论这一点,实际上 NRA 和 QF_NRA 并没有出现在该文档的任何地方。标准网站上提供了一些信息。实数定义为包括:
- all terms of the form (/ m n) or (/ (- m) n) where
- m is a numeral other than 0,
- n is a numeral other than 0 and 1,
- as integers, m and n have no common factors besides 1.
当涉及常数值时,这明确地将零从分母中排除。但是,后来,除法被定义为:
- / as a total function that coincides with the real division function
for all inputs x and y where y is non-zero,
紧随其后的是一条注释:
Since in SMT-LIB logic all function symbols are interpreted as total
functions, terms of the form (/ t 0) *are* meaningful in every
instance of Reals. However, the declaration imposes no constraints
on their value. This means in particular that
- for every instance theory T and
- for every closed terms t1 and t2 of sort Real,
there is a model of T that satisfies (= t1 (/ t2 0)).
这似乎是矛盾的,因为第一个引用说这(/ m 0)
不是 QV_NRA 中的数字,但后一个引用说这/
是一个(= t1 (/ t2 0))
可以满足任何t1
和的函数t2
。
事实上,除以零似乎包含在 SMT-LIB 中,尽管声明只有非零时才是(/ m n)
实数。n
这与我之前的一个问题有关:y=1/x, x=0 在实数中是否可以满足?