似乎mice 包没有内置解决方案,但我们可以编写一个。
这个想法是:
- (1) 使用相同的小鼠算法在用于训练 GLM 和新观察的数据集中填充 NA;
- (2) 只预测没有 NA 的新观测值。
我将使用 iris 作为数据示例。
library(R6)
library(mice)
# Binary output to use Binomial
df <- iris %>% filter(Species != "virginica")
# The new observation
new_data <- tail(df, 1)
# the dataset used to train the model
df <- head(df,-1)
# Now, let insert some NAs
insert_nas <- function(x) {
set.seed(123)
len <- length(x)
n <- sample(1:floor(0.2*len), 1)
i <- sample(1:len, n)
x[i] <- NA
x
}
df$Sepal.Length <- insert_nas(df$Sepal.Length)
df$Petal.Width <- insert_nas(df$Petal.Width)
new_data$Sepal.Width = NA
summary(df)
在拟合方法中,我们应用小鼠来填充 NA,拟合 GLM 模型并将其存储以用于预测方法。
在预测方法中,我们(1)将 new_observation 添加到数据集(使用 NA),(2)使用鼠标再次替换 NA,(3)取回没有 NA 的新观察的行,然后(4 ) 应用 GLM 来预测这个新的观察结果。
# R6 Class Generator
GLMWithMice <- R6Class("GLMWithMice", list(
model = NULL,
df = NULL,
fitted = FALSE,
initialize = function(df) {
self$df <- df
},
fit = function(formula = "Species~.", family = binomial) {
imp <- mice(self$df, m = 2, maxit = 100, meth = 'pmm', seed = 12345, print=FALSE)
df_cleaned <- complete(imp,1)
self$model <- glm(formula, df_cleaned, family = family, maxit = 100)
self$fitted <- TRUE
return(cat("\n model fitted!"))
},
predict = function(new_data, type = "response"){
n_rows <- nrow(self$df)
df_new <- bind_rows(self$df, new_data)
imp <- mice(df_new, m = 2, maxit = 100, meth = 'pmm', seed = 12345, print=FALSE)
df_cleaned <- complete(imp,1)
new_data_cleaned <- tail(df_cleaned, nrow(df_new) - n_rows)
return(predict(self$model,new_data_cleaned, type = type))
}
)
)
#Let's create a new instance of "GLMWithMice" class
model <- GLMWithMice$new(df = df)
class(model)
model$fit(formula = Species~., family = binomial)
model$predict(new_data = new_data)