3

如何将 pandas 数据帧转换为 sklearn one-hot-encoded(数据帧/numpy 数组),其中某些列不需要编码?

mydf = pd.DataFrame({'Target':[0,1,0,0,1, 1,1],
                   'GroupFoo':[1,1,2,2,3,1,2],
                    'GroupBar':[2,1,1,0,3,1,2],
                    'GroupBar2':[2,1,1,0,3,1,2],
                    'SomeOtherShouldBeUnaffected':[2,1,1,0,3,1,2]})
columnsToEncode = ['GroupFoo', 'GroupBar']

是一个已经标签编码的数据框,我只想对标记的列进行编码columnsToEncode

我的问题是我不确定 apd.Dataframenumpy数组表示是否更好,以及如何将编码部分与另一个重新合并。

到目前为止我的尝试:

myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(X_train)
df = pd.concat([
         df[~columnsToEncode], # select all other / numeric
        # select category to one-hot encode
         pd.Dataframe(encoder.transform(X_train[columnsToEncode]))#.toarray() # not sure what this is for
        ], axis=1).reindex_axis(X_train.columns, axis=1)

注意:我知道Pandas: Get Dummies / http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html但这在我需要这样的训练/测试分裂中表现不佳每折叠一个编码。

4

3 回答 3

6

这个库提供了几个分类编码器,使 sklearn / numpy 可以很好地与 pandas https://github.com/wdm0006/categorical_encoding

但是,它们还不支持“处理未知类别”

现在我将使用

myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(df[columnsToEncode])

pd.concat([df.drop(columnsToEncode, 1),
          pd.DataFrame(myEncoder.transform(df[columnsToEncode]))], axis=1).reindex()

因为这支持未知数据集。现在,我会坚持使用 half-pandas half-numpy,因为 pandas 标签很好。对于数字列。

于 2016-10-08T08:21:05.320 回答
3

对于 One Hot Encoding,我建议使用 ColumnTransformer 和 OneHotEncoder 而不是 get_dummies。这是因为 OneHotEncoder 返回一个对象,该对象可用于使用您在训练数据上使用的相同映射对看不见的样本进行编码。

以下代码对columns_to_encode变量中提供的所有列进行编码:

import pandas as pd
import numpy as np

df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300], 
                   'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
                   'label': [1, 0, 0]})

X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')
X = np.array(ct.fit_transform(X))

X:

array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 100],
       [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 200],
       [0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 300]], dtype=object)

为了避免由于虚拟变量 trap 造成的多重共线性,我还建议删除您编码的每一列返回的列之一。以下代码对columns_to_encode变量中提供的所有列进行编码并删除每个热编码列的最后一列:

import pandas as pd
import numpy as np

def sum_prev (l_in):
    l_out = []
    l_out.append(l_in[0])
    for i in range(len(l_in)-1):
        l_out.append(l_out[i] + l_in[i+1])
    return [e - 1 for e in l_out]

df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300], 
                   'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
                   'label': [1, 0, 0]})

X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')

columns_to_encode = [df.iloc[:, del_idx].nunique() for del_idx in columns_to_encode]
columns_to_encode = sum_prev(columns_to_encode)
X = np.array(ct.fit_transform(X))
X = np.delete(X, columns_to_encode, 1)

X:

array([[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 100],
       [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 200],
       [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 300]], dtype=object)
于 2020-06-17T11:44:35.923 回答
0

我相信这个对初始答案的更新甚至更好,以便执行虚拟编码导入日志记录

import pandas as pd
from sklearn.base import TransformerMixin

log = logging.getLogger(__name__)


class CategoricalDummyCoder(TransformerMixin):
    """Identifies categorical columns by dtype of object and dummy codes them. Optionally a pandas.DataFrame
    can be returned where categories are of pandas.Category dtype and not binarized for better coding strategies
    than dummy coding."""

    def __init__(self, only_categoricals=False):
        self.categorical_variables = []
        self.categories_per_column = {}
        self.only_categoricals = only_categoricals

    def fit(self, X, y):
        self.categorical_variables = list(X.select_dtypes(include=['object']).columns)
        logging.debug(f'identified the following categorical variables: {self.categorical_variables}')

        for col in self.categorical_variables:
            self.categories_per_column[col] = X[col].astype('category').cat.categories
        logging.debug('fitted categories')
        return self

    def transform(self, X):
        for col in self.categorical_variables:
            logging.debug(f'transforming cat col: {col}')
            X[col] = pd.Categorical(X[col], categories=self.categories_per_column[col])
            if self.only_categoricals:
                X[col] = X[col].cat.codes
        if not self.only_categoricals:
            return pd.get_dummies(X, sparse=True)
        else:
            return X
于 2017-12-06T05:45:19.680 回答