ROC
作为metric
参数值传递给caretSBF
函数
我们的目标是使用 ROC 汇总指标进行模型选择,同时运行通过过滤选择sbf()
功能进行特征选择。
该BreastCancer
数据集被用作从mlbench
包到运行train()
以及sbf()
使用metric = "Accuracy"
和使用的可重复示例metric = "ROC"
我们要确保sbf()
采用and函数metric
应用的参数来优化模型。为此,我们计划用函数来使用函数。该函数调用,并传递给。train()
rfe()
train()
sbf()
caretSBF$fit
train()
caretSBF
sbfControl
从输出来看,该metric
参数似乎仅用于该部分,inner resampling
而不用于该sbf
部分,即对于outer resampling
输出的 ,该metric
参数未应用于train()
and rfe()
。
正如我们所使用caretSBF
的 which uses train()
,看来metric
参数的范围仅限于train()
,因此不会传递给sbf
。
我们希望澄清是否sbf()
使用metric
参数来优化模型,即outer resampling
?
这是我们在可重现示例上的工作,使用and显示train()
使用metric
参数,但我们不确定。Accuracy
ROC
sbf
一、数据部分
## Loading required packages
library(mlbench)
library(caret)
## Loading `BreastCancer` Dataset from *mlbench* package
data("BreastCancer")
## Data cleaning for missing values
# Remove rows/observation with NA Values in any of the columns
BrC1 <- BreastCancer[complete.cases(BreastCancer),]
# Removing Class and Id Column and keeping just Numeric Predictors
Num_Pred <- BrC1[,2:10]
二、自定义汇总功能
定义fiveStats汇总函数
fiveStats <- function(...) c(twoClassSummary(...),
defaultSummary(...))
三、火车部分
定义 trControl
trCtrl <- trainControl(method="repeatedcv", number=10,
repeats=1, classProbs = TRUE, summaryFunction = fiveStats)
火车 + 公制 = “准确度”
set.seed(1)
TR_acc <- train(Num_Pred,BrC1$Class, method="rf",metric="Accuracy",
trControl = trCtrl,tuneGrid=expand.grid(.mtry=c(2,3,4,5)))
TR_acc
# Random Forest
#
# 683 samples
# 9 predictor
# 2 classes: 'benign', 'malignant'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 1 times)
# Summary of sample sizes: 615, 615, 614, 614, 614, 615, ...
# Resampling results across tuning parameters:
#
# mtry ROC Sens Spec Accuracy Kappa
# 2 0.9936532 0.9729798 0.9833333 0.9765772 0.9490311
# 3 0.9936544 0.9729293 0.9791667 0.9750853 0.9457534
# 4 0.9929957 0.9684343 0.9750000 0.9706948 0.9361373
# 5 0.9922907 0.9684343 0.9666667 0.9677536 0.9295782
#
# Accuracy was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 2.
火车+公制=“ROC”
set.seed(1)
TR_roc <- train(Num_Pred,BrC1$Class, method="rf",metric="ROC",
trControl = trCtrl,tuneGrid=expand.grid(.mtry=c(2,3,4,5)))
TR_roc
# Random Forest
#
# 683 samples
# 9 predictor
# 2 classes: 'benign', 'malignant'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 1 times)
# Summary of sample sizes: 615, 615, 614, 614, 614, 615, ...
# Resampling results across tuning parameters:
#
# mtry ROC Sens Spec Accuracy Kappa
# 2 0.9936532 0.9729798 0.9833333 0.9765772 0.9490311
# 3 0.9936544 0.9729293 0.9791667 0.9750853 0.9457534
# 4 0.9929957 0.9684343 0.9750000 0.9706948 0.9361373
# 5 0.9922907 0.9684343 0.9666667 0.9677536 0.9295782
#
# ROC was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 3.
四。编辑插入符号SBF
编辑 caretSBF 汇总函数
caretSBF$summary <- fiveStats
五、SBF部分
定义 sbfControl
sbfCtrl <- sbfControl(functions=caretSBF,
method="repeatedcv", number=10, repeats=1,
verbose=T, saveDetails = T)
SBF + METRIC =“准确度”
set.seed(1)
sbf_acc <- sbf(Num_Pred, BrC1$Class,
sbfControl = sbfCtrl,
trControl = trCtrl, method="rf", metric="Accuracy")
## sbf_acc
sbf_acc
# Selection By Filter
#
# Outer resampling method: Cross-Validated (10 fold, repeated 1 times)
#
# Resampling performance:
#
# ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD AccuracySD KappaSD
# 0.9931 0.973 0.9833 0.9766 0.949 0.006272 0.0231 0.02913 0.01226 0.02646
#
# Using the training set, 9 variables were selected:
# Cl.thickness, Cell.size, Cell.shape, Marg.adhesion, Epith.c.size...
#
# During resampling, the top 5 selected variables (out of a possible 9):
# Bare.nuclei (100%), Bl.cromatin (100%), Cell.shape (100%), Cell.size (100%), Cl.thickness (100%)
#
# On average, 9 variables were selected (min = 9, max = 9)
## Class of sbf_acc
class(sbf_acc)
# [1] "sbf"
## Names of elements of sbf_acc
names(sbf_acc)
# [1] "pred" "variables" "results" "fit" "optVariables"
# [6] "call" "control" "resample" "metrics" "times"
# [11] "resampledCM" "obsLevels" "dots"
## sbf_acc fit element*
sbf_acc$fit
# Random Forest
#
# 683 samples
# 9 predictor
# 2 classes: 'benign', 'malignant'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 1 times)
# Summary of sample sizes: 615, 614, 614, 615, 615, 615, ...
# Resampling results across tuning parameters:
#
# mtry ROC Sens Spec Accuracy Kappa
# 2 0.9933176 0.9706566 0.9833333 0.9751492 0.9460717
# 5 0.9920034 0.9662121 0.9791667 0.9707801 0.9363708
# 9 0.9914825 0.9684343 0.9708333 0.9693308 0.9327662
#
# Accuracy was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 2.
## Elements of sbf_acc fit
names(sbf_acc$fit)
# [1] "method" "modelInfo" "modelType" "results" "pred"
# [6] "bestTune" "call" "dots" "metric" "control"
# [11] "finalModel" "preProcess" "trainingData" "resample" "resampledCM"
# [16] "perfNames" "maximize" "yLimits" "times" "levels"
## sbf_acc fit final Model
sbf_acc$fit$finalModel
# Call:
# randomForest(x = x, y = y, mtry = param$mtry)
# Type of random forest: classification
# Number of trees: 500
# No. of variables tried at each split: 2
#
# OOB estimate of error rate: 2.34%
# Confusion matrix:
# benign malignant class.error
# benign 431 13 0.02927928
# malignant 3 236 0.01255230
## sbf_acc metric
sbf_acc$fit$metric
# [1] "Accuracy"
## sbf_acc fit best Tune*
sbf_acc$fit$bestTune
# mtry
# 1 2
SBF + 公制 = "ROC"
set.seed(1)
sbf_roc <- sbf(Num_Pred, BrC1$Class,
sbfControl = sbfCtrl,
trControl = trCtrl, method="rf", metric="ROC")
## sbf_roc
sbf_roc
# Selection By Filter
#
# Outer resampling method: Cross-Validated (10 fold, repeated 1 times)
#
# Resampling performance:
#
# ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD AccuracySD KappaSD
# 0.9931 0.973 0.9833 0.9766 0.949 0.006272 0.0231 0.02913 0.01226 0.02646
#
# Using the training set, 9 variables were selected:
# Cl.thickness, Cell.size, Cell.shape, Marg.adhesion, Epith.c.size...
#
# During resampling, the top 5 selected variables (out of a possible 9):
# Bare.nuclei (100%), Bl.cromatin (100%), Cell.shape (100%), Cell.size (100%), Cl.thickness (100%)
#
# On average, 9 variables were selected (min = 9, max = 9)
## Class of sbf_roc
class(sbf_roc)
# [1] "sbf"
## Names of elements of sbf_roc
names(sbf_roc)
# [1] "pred" "variables" "results" "fit" "optVariables"
# [6] "call" "control" "resample" "metrics" "times"
# [11] "resampledCM" "obsLevels" "dots"
## sbf_roc fit element*
sbf_roc$fit
# Random Forest
#
# 683 samples
# 9 predictor
# 2 classes: 'benign', 'malignant'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold, repeated 1 times)
# Summary of sample sizes: 615, 614, 614, 615, 615, 615, ...
# Resampling results across tuning parameters:
#
# mtry ROC Sens Spec Accuracy Kappa
# 2 0.9933176 0.9706566 0.9833333 0.9751492 0.9460717
# 5 0.9920034 0.9662121 0.9791667 0.9707801 0.9363708
# 9 0.9914825 0.9684343 0.9708333 0.9693308 0.9327662
#
# ROC was used to select the optimal model using the largest value.
# The final value used for the model was mtry = 2.
## Elements of sbf_roc fit
names(sbf_roc$fit)
# [1] "method" "modelInfo" "modelType" "results" "pred"
# [6] "bestTune" "call" "dots" "metric" "control"
# [11] "finalModel" "preProcess" "trainingData" "resample" "resampledCM"
# [16] "perfNames" "maximize" "yLimits" "times" "levels"
## sbf_roc fit final Model
sbf_roc$fit$finalModel
# Call:
# randomForest(x = x, y = y, mtry = param$mtry)
# Type of random forest: classification
# Number of trees: 500
# No. of variables tried at each split: 2
#
# OOB estimate of error rate: 2.34%
# Confusion matrix:
# benign malignant class.error
# benign 431 13 0.02927928
# malignant 3 236 0.01255230
## sbf_roc metric
sbf_roc$fit$metric
# [1] "ROC"
## sbf_roc fit best Tune
sbf_roc$fit$bestTune
# mtry
# 1 2
是否sbf()
使用metric
参数来优化模型?如果是,默认使用什么metric
?sbf()
如果sbf()
使用metric
参数,那么如何将其设置为ROC
?
谢谢。