这是完美数字的另一种解决方案:
import itertools as it
def perfect():
for n in it.count(1):
if sum(i for i in range(1, n+1) if n%i == 0) == 2*n:
yield n
>>> list(it.islice(perfect(), 3))
[6, 28, 496]
100 loops, best of 3: 12.6 ms per loop
或者您可以使用因子(以获得稍快的解决方案):
def factors(n):
for a in range(1, int(n**0.5)+1):
if n % a:
continue
x = n // a
yield a
if a != x:
yield x
def perfect():
for n in it.count(1):
if sum(factors(n))==2*n:
yield n
>>> list(it.islice(perfect(), 3))
[6, 28, 496]
1000 loops, best of 3: 1.43 ms per loop
您可以使用快速素数版本进一步改进这一点。
从如何在 Python 中实现一个高效的素数无限生成器中获取一个简单的素数生成器?)
import itertools as it
import functools as ft
def primegen():
yield 2
D = {}
for q in it.count(3, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = q + 2*p
while x in D:
x += 2*p
D[x] = p
def ll(p): # Lucas-Lehmer
if p == 2:
return True
m = 2**p - 1
return ft.reduce(lambda s, _: (s**2 - 2) % m, range(3, p+1), 4) == 0
def perfect():
for p in primegen():
if ll(p):
yield (2**p-1)*(2**(p-1))
>>> list(it.islice(perfect(), 3))
[6, 28, 496]
100000 loops, best of 3: 7.94 µs per loop
>>> list(it.islice(perfect(), 10))
[6,
28,
496,
8128,
33550336,
8589869056,
137438691328,
2305843008139952128,
2658455991569831744654692615953842176,
191561942608236107294793378084303638130997321548169216]
1000 loops, best of 3: 613 µs per loop
这些很快就会变得很大,例如第 20 个完美数有 2663 位。