大家好:我阅读了下面的算法来找到二叉搜索树中两个节点的最低共同祖先。
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node
{
int data;
struct node* left;
struct node* right;
};
struct node* newNode(int );
/* Function to find least comman ancestor of n1 and n2 */
int leastCommanAncestor(struct node* root, int n1, int n2)
{
/* If we have reached a leaf node then LCA doesn't exist
If root->data is equal to any of the inputs then input is
not valid. For example 20, 22 in the given figure */
if(root == NULL || root->data == n1 || root->data == n2)
return -1;
/* If any of the input nodes is child of the current node
we have reached the LCA. For example, in the above figure
if we want to calculate LCA of 12 and 14, recursion should
terminate when we reach 8*/
if((root->right != NULL) &&
(root->right->data == n1 || root->right->data == n2))
return root->data;
if((root->left != NULL) &&
(root->left->data == n1 || root->left->data == n2))
return root->data;
if(root->data > n1 && root->data < n2)
return root->data;
if(root->data > n1 && root->data > n2)
return leastCommanAncestor(root->left, n1, n2);
if(root->data < n1 && root->data < n2)
return leastCommanAncestor(root->right, n1, n2);
}
请注意,上述函数假设 n1 小于 n2。时间复杂度:O(n)空间复杂度:O(1)
这个算法是递归的,我知道在调用递归函数调用时,函数参数和其他相关寄存器被压入堆栈,所以需要额外的空间,另一方面,递归深度与大小或高度有关树,比如说n,是O(n)更有意义吗?
感谢您在这里的任何解释!