我正在尝试使用 mlr 包使用以下用户定义函数进行分类clasFunc
。当我使用调用函数时
clasFunc("classif.lda")
我收到一条错误消息说
model.frame.default 中的错误(术语,newdata,na.action = na.pass,xlev = object$xlevels):因子 col1 具有新级别“新级别”
我试图通过使用代码合并训练和测试数据的因素来解决这个问题
for(j in 1: ncol(train)){
if(class(train[,j])=="factor"){
lvls= union(levels(train[,j]), levels(test[,j]))
levels(train[,j]) =lvls
levels(test[,j]) =lvls
}
}
但这似乎不起作用。
makeTask(type = type, data = data, weights = weights, blocking = blocking, : col1,col2,col3,col4,col5 列的空因子级别被删除
这是我的完整代码。
clasFunc = function(clsnam){
try(
for( i in 1:5){
print(paste0("fold ", i))
train = read.csv(file =paste0("D:\\arff_csv_folds\\real_original\\train", i,".csv"))
test = read.csv(file =paste0("D:\\arff_csv_folds\\real_original\\test", i,".csv"))
for(j in 1: ncol(train)){
if(class(train[,j])=="factor"){
lvls= union(levels(train[,j]), levels(test[,j]))
levels(train[,j]) =lvls
levels(train[,j]) =lvls
}
}
trainTask <- makeClassifTask(data = train,target = "cls", positive = "yes")
testTask <- makeClassifTask(data = test, target = "cls", positive = "yes")
Clslearn = makeLearner(clsnam, predict.type = "prob")
trained <- train(Clslearn, trainTask)
predicted <- predict(trained, testTask)
print(paste0(clsnam, " fold ", i," test auc:",auc(predicted$data$truth, predicted$data$prob.yes)))
}
)
}
这是完整的输出
[1]“折叠1”
makeTask(type = type, data = data, weights = weights, blocking = blocking, : col1,col2,col3,col4,col5 列的空因子级别被删除
[1] “classif.lda 折叠 1 测试 auc:0.673604162894944”
[1]“折叠2”
makeTask(type = type, data = data, weights = weights, blocking = blocking, : col1,col2,col3,col4,col5 列的空因子级别被删除
[1] “classif.lda 折叠 2 测试 auc:0.686717528654292”
[1]“折叠3”
makeTask(type = type, data = data, weights = weights, blocking = blocking, : col1,col2,col3,col4,col5 列的空因子级别被删除
计时停止于:0 0 0
model.frame.default 中的错误(术语,newdata,na.action = na.pass,xlev = object$xlevels):因子 col1 具有新级别“新级别”
我怎样才能解决这个问题?