11

我无法找到单纯形方法的实现。我有一组点并且想要最小化距离所以我只需要在发布这个问题之前我有谷歌的方法单纯形并且找不到任何我可以使用的东西

4

1 回答 1

33
/*
  What: Simplex in C
  AUTHOR: GPL(C) moshahmed/at/gmail.

  What: Solves LP Problem with Simplex:
    { maximize cx : Ax <= b, x >= 0 }.
  Input: { m, n, Mat[m x n] }, where:
    b = mat[1..m,0] .. column 0 is b >= 0, so x=0 is a basic feasible solution.
    c = mat[0,1..n] .. row 0 is z to maximize, note c is negated in input.
    A = mat[1..m,1..n] .. constraints.
    x = [x1..xm] are the named variables in the problem.
    Slack variables are in columns [m+1..m+n]

  USAGE:
    1. Problem can be specified before main function in source code:
      c:\> vim mosplex.c  
      Tableau tab  = { m, n, {   // tableau size, row x columns.
          {  0 , -c1, -c2,  },  // Max: z = c1 x1 + c2 x2,
          { b1 , a11, a12,  },  //  b1 >= a11 x1 + a12 x2
          { b2 , a21, a22,  },  //  b2 >= a21 x1 + a22 x2
        }
      };
      c:\> cl /W4 mosplex.c  ... compile this file.
      c:\> mosplex.exe problem.txt > solution.txt

    2. OR Read the problem data from a file:
      $ cat problem.txt
            m n
            0  -c1 -c2
            b1 a11 a12
            b2 a21 a11 
      $ gcc -Wall -g mosplex.c  -o mosplex
      $ mosplex problem.txt > solution.txt
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <assert.h>

#define M 20
#define N 20

static const double epsilon   = 1.0e-8;
int equal(double a, double b) { return fabs(a-b) < epsilon; }

typedef struct {
  int m, n; // m=rows, n=columns, mat[m x n]
  double mat[M][N];
} Tableau;

void nl(int k){ int j; for(j=0;j<k;j++) putchar('-'); putchar('\n'); }

void print_tableau(Tableau *tab, const char* mes) {
  static int counter=0;
  int i, j;
  printf("\n%d. Tableau %s:\n", ++counter, mes);
  nl(70);

  printf("%-6s%5s", "col:", "b[i]");
  for(j=1;j<tab->n; j++) { printf("    x%d,", j); } printf("\n");

  for(i=0;i<tab->m; i++) {
    if (i==0) printf("max:"); else
    printf("b%d: ", i);
    for(j=0;j<tab->n; j++) {
      if (equal((int)tab->mat[i][j], tab->mat[i][j]))
        printf(" %6d", (int)tab->mat[i][j]);
      else
        printf(" %6.2lf", tab->mat[i][j]);
      }
    printf("\n");
  }
  nl(70);
}

/* Example input file for read_tableau:
     4 5
      0   -0.5  -3 -1  -4 
     40    1     1  1   1 
     10   -2    -1  1   1 
     10    0     1  0  -1  
*/
void read_tableau(Tableau *tab, const char * filename) {
  int err, i, j;
  FILE * fp;

  fp  = fopen(filename, "r" );
  if( !fp ) {
    printf("Cannot read %s\n", filename); exit(1);
  }
  memset(tab, 0, sizeof(*tab));
  err = fscanf(fp, "%d %d", &tab->m, &tab->n);
  if (err == 0 || err == EOF) {
    printf("Cannot read m or n\n"); exit(1);
  }
  for(i=0;i<tab->m; i++) {
    for(j=0;j<tab->n; j++) {
      err = fscanf(fp, "%lf", &tab->mat[i][j]);
      if (err == 0 || err == EOF) {
        printf("Cannot read A[%d][%d]\n", i, j); exit(1);
      }
    }
  }
  printf("Read tableau [%d rows x %d columns] from file '%s'.\n",
    tab->m, tab->n, filename);
  fclose(fp);
}

void pivot_on(Tableau *tab, int row, int col) {
  int i, j;
  double pivot;

  pivot = tab->mat[row][col];
  assert(pivot>0);
  for(j=0;j<tab->n;j++)
    tab->mat[row][j] /= pivot;
  assert( equal(tab->mat[row][col], 1. ));

  for(i=0; i<tab->m; i++) { // foreach remaining row i do
    double multiplier = tab->mat[i][col];
    if(i==row) continue;
    for(j=0; j<tab->n; j++) { // r[i] = r[i] - z * r[row];
      tab->mat[i][j] -= multiplier * tab->mat[row][j];
    }
  }
}

// Find pivot_col = most negative column in mat[0][1..n]
int find_pivot_column(Tableau *tab) {
  int j, pivot_col = 1;
  double lowest = tab->mat[0][pivot_col];
  for(j=1; j<tab->n; j++) {
    if (tab->mat[0][j] < lowest) {
      lowest = tab->mat[0][j];
      pivot_col = j;
    }
  }
  printf("Most negative column in row[0] is col %d = %g.\n", pivot_col, lowest);
  if( lowest >= 0 ) {
    return -1; // All positive columns in row[0], this is optimal.
  }
  return pivot_col;
}

// Find the pivot_row, with smallest positive ratio = col[0] / col[pivot]
int find_pivot_row(Tableau *tab, int pivot_col) {
  int i, pivot_row = 0;
  double min_ratio = -1;
  printf("Ratios A[row_i,0]/A[row_i,%d] = [",pivot_col);
  for(i=1;i<tab->m;i++){
    double ratio = tab->mat[i][0] / tab->mat[i][pivot_col];
    printf("%3.2lf, ", ratio);
    if ( (ratio > 0  && ratio < min_ratio ) || min_ratio < 0 ) {
      min_ratio = ratio;
      pivot_row = i;
    }
  }
  printf("].\n");
  if (min_ratio == -1)
    return -1; // Unbounded.
  printf("Found pivot A[%d,%d], min positive ratio=%g in row=%d.\n",
      pivot_row, pivot_col, min_ratio, pivot_row);
  return pivot_row;
}

void add_slack_variables(Tableau *tab) {
  int i, j;
  for(i=1; i<tab->m; i++) {
    for(j=1; j<tab->m; j++)
      tab->mat[i][j + tab->n -1] = (i==j);
  }
  tab->n += tab->m -1;
}

void check_b_positive(Tableau *tab) {
  int i;
  for(i=1; i<tab->m; i++)
    assert(tab->mat[i][0] >= 0);
}

// Given a column of identity matrix, find the row containing 1.
// return -1, if the column as not from an identity matrix.
int find_basis_variable(Tableau *tab, int col) {
  int i, xi=-1;
  for(i=1; i < tab->m; i++) {
    if (equal( tab->mat[i][col],1) ) {
      if (xi == -1)
        xi=i;   // found first '1', save this row number.
      else
        return -1; // found second '1', not an identity matrix.

    } else if (!equal( tab->mat[i][col],0) ) {
      return -1; // not an identity matrix column.
    }
  }
  return xi;
}

void print_optimal_vector(Tableau *tab, char *message) {
  int j, xi;
  printf("%s at ", message);
  for(j=1;j<tab->n;j++) { // for each column.
    xi = find_basis_variable(tab, j);
    if (xi != -1)
      printf("x%d=%3.2lf, ", j, tab->mat[xi][0] );
    else
      printf("x%d=0, ", j);
  }
  printf("\n");
} 

void simplex(Tableau *tab) {
  int loop=0;
  add_slack_variables(tab);
  check_b_positive(tab);
  print_tableau(tab,"Padded with slack variables");
  while( ++loop ) {
    int pivot_col, pivot_row;

    pivot_col = find_pivot_column(tab);
    if( pivot_col < 0 ) {
      printf("Found optimal value=A[0,0]=%3.2lf (no negatives in row 0).\n",
        tab->mat[0][0]);
      print_optimal_vector(tab, "Optimal vector");
      break;
    }
    printf("Entering variable x%d to be made basic, so pivot_col=%d.\n",
      pivot_col, pivot_col);

    pivot_row = find_pivot_row(tab, pivot_col);
    if (pivot_row < 0) {
      printf("unbounded (no pivot_row).\n");
      break;
    }
    printf("Leaving variable x%d, so pivot_row=%d\n", pivot_row, pivot_row);

    pivot_on(tab, pivot_row, pivot_col);
    print_tableau(tab,"After pivoting");
    print_optimal_vector(tab, "Basic feasible solution");

    if(loop > 20) {
      printf("Too many iterations > %d.\n", loop);
      break;
    }
  }
}

Tableau tab  = { 4, 5, {                     // Size of tableau [4 rows x 5 columns ]
    {  0.0 , -0.5 , -3.0 ,-1.0 , -4.0,   },  // Max: z = 0.5*x + 3*y + z + 4*w,
    { 40.0 ,  1.0 ,  1.0 , 1.0 ,  1.0,   },  //    x + y + z + w <= 40 .. b1
    { 10.0 , -2.0 , -1.0 , 1.0 ,  1.0,   },  //  -2x - y + z + w <= 10 .. b2
    { 10.0 ,  0.0 ,  1.0 , 0.0 , -1.0,   },  //        y     - w <= 10 .. b3
  }
};

int main(int argc, char *argv[]){
  if (argc > 1) { // usage: cmd datafile
    read_tableau(&tab, argv[1]);
  }
  print_tableau(&tab,"Initial");
  simplex(&tab);
  return 0;
} 
于 2013-02-26T02:06:36.663 回答