我已经训练了以下自动编码器模型:
input_img = Input(shape=(1, 32, 32))
x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu',border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='RMSprop', loss='binary_crossentropy')
autoencoder.fit(X_train, X_train,
nb_epoch=1,
batch_size=128,
shuffle=True,
validation_data=(X_test, X_test)]
)
在训练这个自动编码器之后,我想将训练有素的编码器用于受监督的线路。我怎样才能只提取这个自动编码器模型的训练有素的编码器部分?