如果您发现DirectXMath对于您的口味来说有点过于冗长,请查看DirectX Tool Kit中的SimpleMath。特别是,类:Vector2
struct Vector2 : public XMFLOAT2
{
Vector2() : XMFLOAT2(0.f, 0.f) {}
explicit Vector2(float x) : XMFLOAT2( x, x ) {}
Vector2(float _x, float _y) : XMFLOAT2(_x, _y) {}
explicit Vector2(_In_reads_(2) const float *pArray) : XMFLOAT2(pArray) {}
Vector2(FXMVECTOR V) { XMStoreFloat2( this, V ); }
Vector2(const XMFLOAT2& V) { this->x = V.x; this->y = V.y; }
explicit Vector2(const XMVECTORF32& F) { this->x = F.f[0]; this->y = F.f[1]; }
operator XMVECTOR() const { return XMLoadFloat2( this ); }
// Comparison operators
bool operator == ( const Vector2& V ) const;
bool operator != ( const Vector2& V ) const;
// Assignment operators
Vector2& operator= (const Vector2& V) { x = V.x; y = V.y; return *this; }
Vector2& operator= (const XMFLOAT2& V) { x = V.x; y = V.y; return *this; }
Vector2& operator= (const XMVECTORF32& F) { x = F.f[0]; y = F.f[1]; return *this; }
Vector2& operator+= (const Vector2& V);
Vector2& operator-= (const Vector2& V);
Vector2& operator*= (const Vector2& V);
Vector2& operator*= (float S);
Vector2& operator/= (float S);
// Unary operators
Vector2 operator+ () const { return *this; }
Vector2 operator- () const { return Vector2(-x, -y); }
// Vector operations
bool InBounds( const Vector2& Bounds ) const;
float Length() const;
float LengthSquared() const;
float Dot( const Vector2& V ) const;
void Cross( const Vector2& V, Vector2& result ) const;
Vector2 Cross( const Vector2& V ) const;
void Normalize();
void Normalize( Vector2& result ) const;
void Clamp( const Vector2& vmin, const Vector2& vmax );
void Clamp( const Vector2& vmin, const Vector2& vmax, Vector2& result ) const;
// Static functions
static float Distance( const Vector2& v1, const Vector2& v2 );
static float DistanceSquared( const Vector2& v1, const Vector2& v2 );
static void Min( const Vector2& v1, const Vector2& v2, Vector2& result );
static Vector2 Min( const Vector2& v1, const Vector2& v2 );
static void Max( const Vector2& v1, const Vector2& v2, Vector2& result );
static Vector2 Max( const Vector2& v1, const Vector2& v2 );
static void Lerp( const Vector2& v1, const Vector2& v2, float t, Vector2& result );
static Vector2 Lerp( const Vector2& v1, const Vector2& v2, float t );
static void SmoothStep( const Vector2& v1, const Vector2& v2, float t, Vector2& result );
static Vector2 SmoothStep( const Vector2& v1, const Vector2& v2, float t );
static void Barycentric( const Vector2& v1, const Vector2& v2, const Vector2& v3, float f, float g, Vector2& result );
static Vector2 Barycentric( const Vector2& v1, const Vector2& v2, const Vector2& v3, float f, float g );
static void CatmullRom( const Vector2& v1, const Vector2& v2, const Vector2& v3, const Vector2& v4, float t, Vector2& result );
static Vector2 CatmullRom( const Vector2& v1, const Vector2& v2, const Vector2& v3, const Vector2& v4, float t );
static void Hermite( const Vector2& v1, const Vector2& t1, const Vector2& v2, const Vector2& t2, float t, Vector2& result );
static Vector2 Hermite( const Vector2& v1, const Vector2& t1, const Vector2& v2, const Vector2& t2, float t );
static void Reflect( const Vector2& ivec, const Vector2& nvec, Vector2& result );
static Vector2 Reflect( const Vector2& ivec, const Vector2& nvec );
static void Refract( const Vector2& ivec, const Vector2& nvec, float refractionIndex, Vector2& result );
static Vector2 Refract( const Vector2& ivec, const Vector2& nvec, float refractionIndex );
static void Transform( const Vector2& v, const Quaternion& quat, Vector2& result );
static Vector2 Transform( const Vector2& v, const Quaternion& quat );
static void Transform( const Vector2& v, const Matrix& m, Vector2& result );
static Vector2 Transform( const Vector2& v, const Matrix& m );
static void Transform( _In_reads_(count) const Vector2* varray, size_t count, const Matrix& m, _Out_writes_(count) Vector2* resultArray );
static void Transform( const Vector2& v, const Matrix& m, Vector4& result );
static void Transform( _In_reads_(count) const Vector2* varray, size_t count, const Matrix& m, _Out_writes_(count) Vector4* resultArray );
static void TransformNormal( const Vector2& v, const Matrix& m, Vector2& result );
static Vector2 TransformNormal( const Vector2& v, const Matrix& m );
static void TransformNormal( _In_reads_(count) const Vector2* varray, size_t count, const Matrix& m, _Out_writes_(count) Vector2* resultArray );
// Constants
static const Vector2 Zero;
static const Vector2 One;
static const Vector2 UnitX;
static const Vector2 UnitY;
};
// Binary operators
Vector2 operator+ (const Vector2& V1, const Vector2& V2);
Vector2 operator- (const Vector2& V1, const Vector2& V2);
Vector2 operator* (const Vector2& V1, const Vector2& V2);
Vector2 operator* (const Vector2& V, float S);
Vector2 operator/ (const Vector2& V1, const Vector2& V2);
Vector2 operator* (float S, const Vector2& V);
DirectXMath 如此冗长的主要原因首先是为了让程序员在“溢出到内存”时非常清楚,因为这往往会对 SIMD 代码的性能产生负面影响。当我从 XNAMath 迁移到 DirectXMath 时,我曾考虑添加类似用于“SimpleMath”的隐式转换,但我想确保任何此类“C++ 魔法”都是可选的,并且不会让对性能敏感的人感到意外开发商。SimpleMath 的作用也有点像训练轮,可以更轻松地移植不支持对齐的现有代码,并随着时间的推移将其转变为对 SIMD 更友好的东西。
SimpleMath(和您的包装器)的真正性能问题是每个函数实现都必须围绕相当少量的 SIMD 执行显式加载和存储。理想情况下,在优化的代码中它们都会被合并掉,但在调试代码中它们总是存在的。为了从 SIMD 获得真正的性能优势,您希望在每个加载和存储对之间进行长时间的寄存器内 SIMD 操作。
另一个含义是传递一个包装器的参数Vector2
或者你Vector2F
永远不会特别有效。XMVECTOR
使用 typedef__m128
而不是 struct的全部原因,以及FXMVECTOR
, GXMVECTOR
, HXMVECTOR
,和的存在CXMVECTOR
是为了尝试优化所有可能的调用约定场景,并在最好的情况下获得寄存器内传递行为(如果事情没有内联)。请参阅MSDN。实际上,您能做的最好的事情Vector2
就是始终如一地传递它const&
以最小化临时文件和堆栈副本。