我一直在尝试使用python kafka库,但无法让生产者工作。
经过一番研究,我发现 kafka 向消费者发送了(我猜也是预期的)一个额外的 5 字节标头(一个 0 字节,一个长包含模式注册表的模式 id)。我已经设法通过简单地剥离第一个字节来让消费者工作。
在编写制片人时,我应该在前面加上一个类似的标题吗?
下面出现的异常:
[2016-09-14 13:32:48,684] ERROR Task hdfs-sink-0 threw an uncaught and unrecoverable exception (org.apache.kafka.connect.runtime.WorkerTask:142)
org.apache.kafka.connect.errors.DataException: Failed to deserialize data to Avro:
at io.confluent.connect.avro.AvroConverter.toConnectData(AvroConverter.java:109)
at org.apache.kafka.connect.runtime.WorkerSinkTask.convertMessages(WorkerSinkTask.java:357)
at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:226)
at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:170)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:142)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:140)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:175)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.kafka.common.errors.SerializationException: Error deserializing Avro message for id -1
Caused by: org.apache.kafka.common.errors.SerializationException: Unknown magic byte!
我正在使用 kafka 和 python-kafka 的最新稳定版本。
编辑
消费者
from kafka import KafkaConsumer
import avro.io
import avro.schema
import io
import requests
import struct
# To consume messages
consumer = KafkaConsumer('hadoop_00',
group_id='my_group',
bootstrap_servers=['hadoop-master:9092'])
schema_path = "resources/f1.avsc"
for msg in consumer:
value = bytearray(msg.value)
schema_id = struct.unpack(">L", value[1:5])[0]
response = requests.get("http://hadoop-master:8081/schemas/ids/" + str(schema_id))
schema = response.json()["schema"]
schema = avro.schema.parse(schema)
bytes_reader = io.BytesIO(value[5:])
# bytes_reader = io.BytesIO(msg.value)
decoder = avro.io.BinaryDecoder(bytes_reader)
reader = avro.io.DatumReader(schema)
temp = reader.read(decoder)
print(temp)
制片人
from kafka import KafkaProducer
import avro.schema
import io
from avro.io import DatumWriter
producer = KafkaProducer(bootstrap_servers="hadoop-master")
# Kafka topic
topic = "hadoop_00"
# Path to user.avsc avro schema
schema_path = "resources/f1.avsc"
schema = avro.schema.parse(open(schema_path).read())
range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for i in range:
producer.send(topic, b'{"f1":"value_' + str(i))