这个问题可能主要是针对或多或少进步的天文学家。
你知道如何将 NVSS 拟合文件转换为只有 2 个(不是 4 个!)轴的拟合吗?或者,当我尝试在光学 DSS 数据上重叠 nvss 计数时,如何处理具有 4 轴并在 Python 中生成以下错误的文件,使用 astropy 和其他用于 Python 的“astro”库?(下面的代码)
我试过这样做,当 NVSS FITS 有 4 个轴时,会出现错误消息和警告:
WARNING: FITSFixedWarning: The WCS transformation has more axes (4) than the image it is associated with (2) [astropy.wcs.wcs]
WARNING: FITSFixedWarning: 'datfix' made the change 'Invalid parameter value: invalid date '19970331''. [astropy.wcs.wcs]
https://stackoverflow.com/questions/33107224/re-sizing-a-fits-image-in-python
WARNING: FITSFixedWarning: 'datfix' made the change 'Invalid parameter value: invalid date '19970331''. [astropy.wcs.wcs]
Traceback (most recent call last):
File "p.py", line 118, in <module>
cont2 = ax[Header2].contour(opt.data, [-8,-2,2,4], colors="r", linewidth = 10, zorder = 2)
File "/home/ela/anaconda2/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/parasite_axes.py", line 195, in contour
return self._contour("contour", *XYCL, **kwargs)
File "/home/ela/anaconda2/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/parasite_axes.py", line 167, in _contour
ny, nx = C.shape
ValueError: too many values to unpack
我还尝试使用 FITS_tools/match_images.py 首先将 NVSS FITS 调整为 DSS 文件的正常 2 轴大小,然后使用更正后的文件而不是原始文件,但这只会给我一个错误:
Traceback (most recent call last):
File "p.py", line 64, in <module>
im1,im2 = FITS_tools.match_fits(to_be_projected,reference_fits)
File "/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/match_images.py", line 105, in match_fits
image1_projected = project_to_header(fitsfile1, header, **kwargs)
File "/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/match_images.py", line 64, in project_to_header
**kwargs)
File "/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py", line 49, in hcongrid
grid1 = get_pixel_mapping(header1, header2)
File "/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py", line 128, in get_pixel_mapping
csys2 = _ctype_to_csys(wcs2.wcs)
File "/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py", line 169, in _ctype_to_csys
raise NotImplementedError("Non-fk4/fk5 equinoxes are not allowed")
NotImplementedError: Non-fk4/fk5 equinoxes are not allowed
我不知道该怎么做。FIRST.FITS 文件没有类似的问题。Python 中的 Imsize 还告诉我 NVSS 是唯一一个是 4 维的,例如(1、1、250、250)。所以它不能被适当地覆盖。你有什么主意吗?请帮助我,我可以捐赠你的项目作为报复。我花了几天时间试图解决它,但它仍然无法正常工作,但我非常需要它。
代码
# Import matplotlib modules
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from matplotlib.axes import Axes
import matplotlib.cm as cm
from matplotlib.patches import Ellipse
import linecache
import FITS_tools
# Import numpy and scipy for filtering
import scipy.ndimage as nd
import numpy as np
import pyfits
import matplotlib.pyplot
import pylab
#Import astronomical libraries
from astropy.io import fits
import astropy.units as u
#from astroquery.ned import Ned
import pywcsgrid2
# Read and prepare the data
file1=open('/home/ela/file')
count=len(open('file', 'rU').readlines())
print count
for i in xrange(count):
wiersz=file1.readline()
title=str(wiersz)
print title
title2=title.strip("\n")
print title2
path = '/home/ela/'
fitstitle = path+title2+'_DSS.FITS'
fitstitle2 = path+title2+'_FIRST.FITS'
fitstitle3 = path+title2+'_NVSS.FITS'
datafile = path+title2
outtitle = path+title2+'.png'
print outtitle
print datafile
nvss = fits.open(fitstitle)[0]
first = fits.open(fitstitle2)[0]
opt = fits.open(fitstitle3)[0]
try:
fsock = fits.open(fitstitle3) #(2)
except IOError:
print "Plik nie istnieje"
print "Ta linia zawsze zostanie wypisana" #(3)
opt.verify('fix')
first.verify('fix')
nvss.verify('fix')
Header = nvss.header
Header2 = first.header
Header3 = opt.header
to_be_projected = path+title2+'_NVSS.FITS'
reference_fits = path+title2+'_DSS.FITS'
im1,im2 = FITS_tools.match_fits(to_be_projected,reference_fits)
print(opt.shape)
print(first.shape)
print(nvss.shape)
print(im2.shape)
#We select the range we want to plot
minmax_image = [np.average(nvss.data)-6.*np.std(nvss.data), np.average(nvss.data)+5.*np.std(nvss.data)] #Min and max value for the image
minmax_PM = [-500., 500.]
# PREPARE PYWCSGRID2 AXES AND FIGURE
params = {'text.usetex': True,'font.family': 'serif', 'font.serif': 'Times New Roman'}
plt.rcParams.update(params)
#INITIALIZE FIGURE
fig = plt.figure(1)
ax = pywcsgrid2.subplot(111, header=Header)
#CREATE COLORBAR AXIS
divider = make_axes_locatable(ax)
cax = divider.new_horizontal("5%", pad=0.1, axes_class=Axes)
#fig.add_axes(cax)
#Configure axis
ax.grid() #Will plot a grid in the figure
# ax.set_ticklabel_type("arcmin", center_pixel=[Header['CRPIX1'],Header['CRPIX2']]) #Coordinates centered at the galaxy
ax.set_ticklabel_type("arcmin") #Coordinates centered at the galaxy
ax.set_display_coord_system("fk5")
# ax.add_compass(loc=3) #Add a compass at the bottom left of the image
#Plot the u filter image
i = ax.imshow(nvss.data, origin="lower", interpolation="nearest", cmap=cm.bone_r, vmin= minmax_image[0], vmax = minmax_image[1], zorder = 0)
#Plot contours from the infrared image
cont = ax[Header2].contour(nd.gaussian_filter(first.data,4),2 , colors="r", linewidth = 20, zorder = 2)
# cont = ax[Header2].contour(first.data, [-2,0,2], colors="r", linewidth = 20, zorder = 1)
# cont2 = ax[Header2].contour(opt.data, [-8,-2,2,4], colors="r", linewidth = 10, zorder = 2)
#Plot PN positions with color coded velocities
# Velocities = ax['fk5'].scatter(Close_to_M31_PNs['RA(deg)'], Close_to_M31_PNs['DEC(deg)'], c = Close_to_M31_PNs['Velocity'], s = 30, cmap=cm.RdBu, edgecolor = 'none',
# vmin = minmax_PM[0], vmax = minmax_PM[1], zorder = 2)
f2=open(datafile)
count2=len(open('f2', 'rU').readlines())
print count2
for i in xrange(count):
xx=f2.readline()
# print xx
yy=f2.readline()
xxx=float(xx)
print xxx
yyy=float(yy)
print yyy
Velocities = ax['fk5'].scatter(xxx, yyy ,c=40, s = 200, marker='x', edgecolor = 'red', vmin = minmax_PM[0], vmax = minmax_PM[1], zorder = 1)
it2 = ax.add_inner_title(title2, loc=1)
# Plot the colorbar, with the v_los of the PN
# cbar = plt.colorbar(Velocities, cax=cax)
# cbar.set_label(r'$v_{los}[$m s$^{-1}]$')
# set_label('4444')
plt.show()
plt.savefig(outtitle)
#plt.savefig("image1.png")