I've recently used the Language API to gather sentiment predictions for a work project. I had about 1,300 unlabeled documents and we used NLTK's tools initially, which was based on a dictionary of terms with polarity estimates of each word in the dictionary. I turned to the API, and after reviewing the predictions, the API produced much better results than NLTK.
I understand that the engineers probably won't want to release the details of the prediction engine, but I am curious how it works at a high level. If anybody could enlighten me or point me in the right direction, I'd appreciate it. For example, "it uses a Neural Network, trained on billions of observations," would be a reasonable answer.
Again, I'm using this for a work project and I'd like to be able to give a brief justification of why I switched from NLTK to the API (the improved results should speak for themselves, but I will definitely get "well, how does it work?").