我应该先说我是 Haskell 和管道库的初学者,我想了解是什么导致该程序在test
函数中的高内存使用。
特别是在产生r1
价值的折叠中,test
我看到 MyRecord 值的积累,直到产生最终结果,除非deepseq
使用。在我的 ~ 500000 行 / ~ 230 MB 的样本数据集上,内存使用量超过 1.5 GB。
产生r2
价值的折叠在恒定内存中运行。
我想了解的是:
1) 什么可能导致 MyMemory 值在第一折中构建,为什么使用deepseq
会修复它?我非常随意地向它扔东西,直到达到使用deepseq
来实现恒定的内存使用,但想了解它为什么起作用。是否可以在不使用的情况下实现恒定的内存使用deepseq
,同时仍然产生相同的 Maybe Int 结果类型?
2)。第二折有什么不同导致它不表现出相同的问题?
我知道如果我只使用整数而不是元组,我可以使用sum
Pipes.Prelude 中的内置函数,但我最终会想要处理包含任何解析错误的第二个元素。
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Test where
import Control.Arrow
import Control.DeepSeq
import Control.Monad
import Data.Aeson
import Data.Function
import Data.Maybe
import Data.Monoid
import Data.Text (Text)
import Pipes
import qualified Pipes.Aeson as PA (DecodingError(..))
import qualified Pipes.Aeson.Unchecked as PA
import qualified Pipes.ByteString as PB
import qualified Pipes.Group as PG
import qualified Pipes.Parse as PP
import qualified Pipes.Prelude as P
import System.IO
import Control.Lens
import qualified Control.Foldl as Fold
data MyRecord = MyRecord
{ myRecordField1 :: !Text
, myRecordField2 :: !Int
, myRecordField3 :: !Text
, myRecordField4 :: !Text
, myRecordField5 :: !Text
, myRecordField6 :: !Text
, myRecordField7 :: !Text
, myRecordField8 :: !Text
, myRecordField9 :: !Text
, myRecordField10 :: !Int
, myRecordField11 :: !Text
, myRecordField12 :: !Text
, myRecordField13 :: !Text
} deriving (Eq, Show)
instance FromJSON MyRecord where
parseJSON (Object o) =
MyRecord <$> o .: "field1" <*> o .: "field2" <*> o .: "field3" <*>
o .: "field4" <*>
o .: "field5" <*>
o .: "filed6" <*>
o .: "field7" <*>
o .: "field8" <*>
o .: "field9" <*>
(read <$> o .: "field10") <*>
o .: "field11" <*>
o .: "field12" <*>
o .: "field13"
parseJSON x = fail $ "MyRecord: expected Object, got: " <> show x
instance ToJSON MyRecord where
toJSON _ = undefined
test :: IO ()
test = do
withFile "some-file" ReadMode $ \hIn
{-
the pipeline is composed as follows:
1 a producer reading a file with Pipes.ByteString, splitting chunks into lines,
and parsing the lines as JSON to produce tuples of (Maybe MyRecord, Maybe
ByteString), the second element being an error if parsing failed
2 a pipe filtering that tuple on a field of Maybe MyRecord, passing matching
(Maybe MyRecord, Maybe ByteString) downstream
3 and a pipe that picks an Int field out of Maybe MyRecord, passing (Maybe Int,
Maybe ByteString downstream)
pipeline == 1 >-> 2 >-> 3
memory profiling indicates the memory build up is due to accumulation of
MyRecord "objects", and data types comprising their fields (mainly
Text/ARR_WORDS)
-}
-> do
let pipeline = f1 hIn >-> f2 >-> f3
-- need to use deepseq to avoid leaking memory
r1 <-
P.fold
(\acc (v, _) -> (+) <$> acc `deepseq` acc <*> pure (fromMaybe 0 v))
(Just 0)
id
(pipeline :: Producer (Maybe Int, Maybe PB.ByteString) IO ())
print r1
hSeek hIn AbsoluteSeek 0
-- this works just fine as is and streams in constant memory
r2 <-
P.fold
(\acc v ->
case fst v of
Just x -> acc + x
Nothing -> acc)
0
id
(pipeline :: Producer (Maybe Int, Maybe PB.ByteString) IO ())
print r2
return ()
return ()
f1
:: (FromJSON a, MonadIO m)
=> Handle -> Producer (Maybe a, Maybe PB.ByteString) m ()
f1 hIn = PB.fromHandle hIn & asLines & resumingParser PA.decode
f2
:: Pipe (Maybe MyRecord, Maybe PB.ByteString) (Maybe MyRecord, Maybe PB.ByteString) IO r
f2 = filterRecords (("some value" ==) . myRecordField5)
f3 :: Pipe (Maybe MyRecord, d) (Maybe Int, d) IO r
f3 = P.map (first (fmap myRecordField10))
filterRecords
:: Monad m
=> (MyRecord -> Bool)
-> Pipe (Maybe MyRecord, Maybe PB.ByteString) (Maybe MyRecord, Maybe PB.ByteString) m r
filterRecords predicate =
for cat $ \(l, e) ->
when (isNothing l || (predicate <$> l) == Just True) $ yield (l, e)
asLines
:: Monad m
=> Producer PB.ByteString m x -> Producer PB.ByteString m x
asLines p = Fold.purely PG.folds Fold.mconcat (view PB.lines p)
parseRecords
:: (Monad m, FromJSON a, ToJSON a)
=> Producer PB.ByteString m r
-> Producer a m (Either (PA.DecodingError, Producer PB.ByteString m r) r)
parseRecords = view PA.decoded
resumingParser
:: Monad m
=> PP.StateT (Producer a m r) m (Maybe (Either e b))
-> Producer a m r
-> Producer (Maybe b, Maybe a) m ()
resumingParser parser p = do
(x, p') <- lift $ PP.runStateT parser p
case x of
Nothing -> return ()
Just (Left _) -> do
(x', p'') <- lift $ PP.runStateT PP.draw p'
yield (Nothing, x')
resumingParser parser p''
Just (Right b) -> do
yield (Just b, Nothing)
resumingParser parser p'