我如何设置参数maximize
来判断xgboost
早期停止标准是 logloss 越来越差。我尝试以下示例:
library(mlbench)
library(mlr)
data(Sonar)
trainTask1 <- makeClassifTask(data = Sonar,target = "Class",positive = "R")
lrn = makeLearner("classif.xgboost", predict.type = "prob")
ps = makeParamSet(
makeDiscreteParam("nrounds", values =1000L,tunable = FALSE),
makeDiscreteParam("eta", values = c(0.01),tunable = FALSE),
makeIntegerParam("max_depth", lower=1,upper=5),
makeNumericParam("gamma", lower = 1, upper = 50),
makeNumericParam("colsample_bytree", lower=0.1,upper=0.9),
makeIntegerParam("min_child_weight", lower = 50, upper = 200),
makeDiscreteParam("print.every.n", values = 3,tunable = FALSE),
makeDiscreteParam("early.stop.round", values = 5L,tunable = FALSE),
makeLogicalParam("maximize", default = FALSE,tunable = FALSE)
)
ctrl = makeTuneControlIrace(maxExperiments = 200L, show.irace.output = TRUE)
rdesc = makeResampleDesc("Holdout")
res = tuneParams(lrn, task = trainTask1, resampling = rdesc, control = ctrl , par.set = ps,measures = logloss, show.info = TRUE)
我收到以下错误:
[Tune-x] 1: nrounds=1000; eta=0.01; max_depth=4; gamma=30.2; colsample_bytree=0.17; min_child_weight=193; print.every.n=3; early.stop.round=5; maximize=TRUE
Error in xgb.train(params, dtrain, nrounds, watchlist, verbose = verbose, :
Please set maximize to note whether the model is maximizing the evaluation or not.
我认为设置maximize=FALSE
足以告诉调优算法 logloss 应该最小化。但是我不能将其传递给xgb.train
.
我的会话信息如下:
R version 3.3.1 (2016-06-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mlr_2.9 stringi_1.1.1 ParamHelpers_1.8 ggplot2_2.1.0 BBmisc_1.10
[6] mlbench_2.1-1 RevoUtilsMath_8.0.3
loaded via a namespace (and not attached):
[1] Rcpp_0.12.5 magrittr_1.5 splines_3.3.1 munsell_0.4.3 lattice_0.20-33 xtable_1.8-2
[7] colorspace_1.2-6 R6_2.1.2 stringr_1.0.0 plyr_1.8.3 dplyr_0.4.3 tools_3.3.1
[13] parallel_3.3.1 grid_3.3.1 checkmate_1.8.1 data.table_1.9.6 gtable_0.2.0 DBI_0.4-1
[19] htmltools_0.3.5 ggvis_0.4.2 xgboost_0.4-3 survival_2.39-4 assertthat_0.1 digest_0.6.9
[25] irace_1.07 Matrix_1.2-6 shiny_0.13.2 mime_0.4 parallelMap_1.3 RevoUtils_10.0.1
[31] scales_0.4.0 backports_1.0.2 httpuv_1.3.3 chron_2.3-47