5

我试图在 Python 中估算缺失值,并且sklearn似乎没有超出平均值(平均值、中位数或众数)估算的方法。橙色插补模型似乎提供了一个可行的选择。然而,它似乎Orange.data.Table没有认识到np.nan或不知何故,插补失败了。

import Orange
import numpy as np

tmp = np.array([[1, 2, np.nan, 5, 8, np.nan], [40, 4, 8, 1, 0.2, 9]])
data = Orange.data.Table(tmp)
imputer = Orange.feature.imputation.ModelConstructor()
imputer.learner_continuous = Orange.classification.tree.TreeLearner(min_subset=20)
imputer = imputer(data )
impdata = imputer(data)
for i in range(0, len(tmp)):
    print impdata[i]

输出是

[1.000, 2.000, 1.#QO, 5.000, 8.000, 1.#QO]
[40.000, 4.000, 8.000, 1.000, 0.200, 9.000]

知道我缺少什么吗?谢谢!

4

2 回答 2

3

似乎问题在于 Orange 中的缺失值表示为?or ~。奇怪的是,Orange.data.Table(numpy.ndarray)构造函数并没有推断numpy.nan应该转换为?or~而是将它们转换为1.#QO. 下面的自定义函数pandas_to_orange(), 解决了这个问题。

import Orange
import numpy as np
import pandas as pd

from collections import OrderedDict

# Adapted from https://github.com/biolab/orange3/issues/68

def construct_domain(df):
    columns = OrderedDict(df.dtypes)

    def create_variable(col):
        if col[1].__str__().startswith('float'):
            return Orange.feature.Continuous(col[0])
        if col[1].__str__().startswith('int') and len(df[col[0]].unique()) > 50:
            return Orange.feature.Continuous(col[0])
        if col[1].__str__().startswith('date'):
            df[col[0]] = df[col[0]].values.astype(np.str)
        if col[1].__str__() == 'object':
            df[col[0]] = df[col[0]].astype(type(""))
        return Orange.feature.Discrete(col[0], values = df[col[0]].unique().tolist())
    return Orange.data.Domain(list(map(create_variable, columns.items())))

def pandas_to_orange(df):
    domain = construct_domain(df)
    df[pd.isnull(df)]='?'
    return Orange.data.Table(Orange.data.Domain(domain), df.values.tolist())

df = pd.DataFrame({'col1':[1, 2, np.nan, 4, 5, 6, 7, 8, 9, np.nan, 11], 
                    'col2': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110.]}) 

tmp = pandas_to_orange(df)
for i in range(0, len(tmp)):
    print tmp[i]

输出是:

[1.000, 10.000]
[2.000, 20.000]
[?, 30.000]
[4.000, 40.000]
[5.000, 50.000]
[6.000, 60.000]
[7.000, 70.000]
[8.000, 80.000]
[9.000, 90.000]
[?, 100.000]
[11.000, 110.000]

我想正确编码缺失值的原因是我可以使用 Orange 插补库。然而,库中的预测树模型似乎只做简单的均值插补。具体来说,它为所有缺失值估算相同的值。

imputer = Orange.feature.imputation.ModelConstructor()
imputer.learner_continuous = Orange.classification.tree.TreeLearner(min_subset=20)
imputer = imputer(tmp )
impdata = imputer(tmp)
for i in range(0, len(tmp)):
    print impdata[i]

这是输出:

[1.000, 10.000]
[2.000, 20.000]
[5.889, 30.000]
[4.000, 40.000]
[5.000, 50.000]
[6.000, 60.000]
[7.000, 70.000]
[8.000, 80.000]
[9.000, 90.000]
[5.889, 100.000]
[11.000, 110.000]

我一直在寻找可以在完整案例上拟合模型的东西,比如 kNN,并使用拟合模型来预测缺失的案例。fancyimpute(一个 Python 3 包)会这样做,但会抛出MemoryError我的 300K+ 输入。

from fancyimpute import KNN

df = pd.DataFrame({'col1':[1, 2, np.nan, 4, 5, 6, 7, 8, 9, np.nan, 11], 
                    'col2': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110.]}) 

X_filled_knn = KNN(k=3).complete(df)
X_filled_knn

输出是:

array([[   1.        ,   10.        ],
       [   2.        ,   20.        ],
       [   2.77777784,   30.        ],
       [   4.        ,   40.        ],
       [   5.        ,   50.        ],
       [   6.        ,   60.        ],
       [   7.        ,   70.        ],
       [   8.        ,   80.        ],
       [   9.        ,   90.        ],
       [   9.77777798,  100.        ],
       [  11.        ,  110.        ]])

我可能会找到一种解决方法或将数据集拆分成块(不理想)。

于 2016-09-05T00:28:10.147 回答
1

在 Orange v2 中,您可以将 numpy 掩码数组传递给 Orange.data.Table 构造函数。修改您的示例:

import Orange
import numpy as np

tmp = np.array([[1, 2, np.nan, 5, 8, np.nan], [40, 4, 8, 1, 0.2, 9]])
tmp_masked = np.ma.masked_array(tmp, mask=np.isnan(tmp))
data = Orange.data.Table(tmp_masked)
imputer = Orange.feature.imputation.ModelConstructor()
imputer.learner_continuous = Orange.classification.tree.TreeLearner(min_subset=20)
imputer = imputer(data )
impdata = imputer(data)
for i in range(0, len(tmp)):
    print impdata[i]
于 2016-09-05T15:04:36.553 回答