2

我正在尝试使用 tensorflow 创建循环神经网络。我的代码是这样的:

import tensorflow as tf

rnn_cell = tf.nn.rnn_cell.GRUCell(3)

inputs = [tf.constant([[0, 1]], dtype=tf.float32), tf.constant([[2, 3]], dtype=tf.float32)]

outputs, end = tf.nn.rnn(rnn_cell, inputs, dtype=tf.float32)

现在,一切运行良好。但是,我对实际发生的事情感到困惑。输出维度始终是批大小 x rnn 单元隐藏状态的大小 - 它们如何完全独立于输入大小?

如果我的理解是正确的,输入会在每一步连接到 rnn 的隐藏状态,然后乘以权重矩阵(以及其他操作)。这意味着权重矩阵的维度需要依赖于输入大小,这是不可能的,因为 rnn_cell 是在输入声明之前创建的!

4

1 回答 1

0

在看到一个关于 tensorflow 的 GRU 实现的问题的答案后,我已经意识到发生了什么。与我的直觉相反,GRUCell 构造函数根本不会创建任何权重或偏差变量。相反,它创建自己的变量范围,然后在实际调用时按需实例化变量。Tensorflow 的变量作用域机制确保变量只创建一次,并在对 GRU 的后续调用中共享。

我不确定他们为什么决定采用这种相当混乱的实现,据我所知,这是没有记录的。对我来说,使用 python 的对象级变量作用域将 tensorflow 变量封装在 GRUCell 本身中似乎更合适,而不是依赖于额外的隐式作用域机制。

于 2016-09-03T18:54:55.847 回答