详细信息:Ubuntu 14.04(LTS)、OpenCV 2.4.13、Spyder 2.3.9(Python 2.7)、Tensorflow r0.10
我想 用Python和Tensorflow(可选OpenCV)从图像中识别 Number 。
此外,我想将 MNIST 数据训练与 tensorflow 一起使用
像这样(代码参考本页视频),
代码:
import tensorflow as tf
import random
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
### modeling ###
activation = tf.nn.softmax(tf.matmul(x, W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(activation), reduction_indices=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
### training ###
for epoch in range(training_epochs) :
avg_cost = 0
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch) :
batch_xs, batch_ys =mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
avg_cost += sess.run(cross_entropy, feed_dict = {x: batch_xs, y: batch_ys}) / total_batch
if epoch % display_step == 0 :
print "Epoch : ", "%04d" % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished"
### predict number ###
r = random.randint(0, mnist.test.num_examples - 1)
print "Prediction: ", sess.run(tf.argmax(activation,1), {x: mnist.test.images[r:r+1]})
print "Correct Answer: ", sess.run(tf.argmax(mnist.test.labels[r:r+1], 1))
但是,问题是我怎样才能使numpy数组像
代码补充:
mnist.test.images[r:r+1]
[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0。0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0. 0.50196081 0.50196081 0.50196081 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 1. 1. 1. 1. 0.50196081 0.25098041 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0.50196081 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.25098041 0. 0. 0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0. 0. 0. 0.74901962 1. 1. 1. 1. 0.50196081 0.50196081 0.50196081 0.74901962 1. 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0.0.25098041 1. 1. 0.74901962 0.25098041 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.74901962 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0.25098041 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0.25098041 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 0.25098041 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.25098041 1. 1. 1. 0. 0. 0. 0. 0. 0. 0 . 0. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.25098041 1. 1. 1. 1. 0. 0. 0.0. 0. 0. 0. 0. 0.74901962 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.74901962 1. 1. 1. 0.25098041 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.25098041 0.74901962 1. 1. 1. 1. 0.74901962 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.50196081 1. 1. 0.74901962 0. 0. 0. 0. 0. 0.25098041 0.50196081 1. 1.1. 1. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.74901962 1. 1. 1. 1. 0.50196081 0.50196081 0.74901962 1. 1. 1. 1 . 1. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.74901962 1. 1. 1. 1. 1. 1. 1. 1 . 1. 1. 1. 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0.25098041 1. 1. 1. 1. 1. 1. 1. 0.50196081 0.25098041 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0.50196081 0.50196081 0.50196081 0.50196081 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]]0. 0. 0. 0. ]]0. 0. 0. 0. ]]
当我使用 OpenCV 解决问题时,我可以制作关于图像的 numpy 数组,但有点奇怪。(我想把数组变成28x28的向量)
代码补充:
image = cv2.imread("img_easy.jpg")
resized_image = cv2.resize(image, (28, 28))
[[[255 255 255] [255 255 255] [255 255 255] ...,[255 255 255] [255 255 255] [255 255 255]]
[[255 255 255] [255 255 255] [255 255 255] ..., [255 255 255] [255 255 255] [255 255 255]]
[[255 255 255] [255 255 255] [255 255 255] ..., [255 255 255] [255 255 255] [255 255 255]]
...,
[[255 255 255] [255 255 255] [255 255 255] ..., [255 255 255] [255 255 255] [255 255 255]]
[[255 255 255] [255 255 255] [255 255 255] ..., [255 255 255] [255 255 255] [255 255 255]]
[[255 255 255] [255 255 255] [255 255 255] ..., [255 255 255] [255 255 255] [255 255 255]]]
然后,我将 value('resized_image') 放入 Tensorflow 代码中。像这样,
代码修改:
### predict number ###
print "Prediction: ", sess.run(tf.argmax(activation,1), {x: resized_image})
print "Correct Answer: 9"
结果,该行出现错误。
ValueError:无法为形状为“(?,784)”的张量u'Placeholder_2:0'提供形状(28、28、3)的值
最后,
1)我想知道如何制作可以输入张量流代码的数据(可能是numpy数组[784])
2)你知道使用tensorflow的数字识别例子吗?
我是机器学习的初学者。
请详细告诉我该怎么做。