2

我有一个数据框如下:

mydf <- data.frame(Term = c('dog','cat','lion','tiger','pigeon','vulture'), Category = c('pet','pet','wild','wild','pet','wild'),
    Count = c(12,14,19,7,11,10), Rate = c(0.4,0.7,0.3,0.6,0.1,0.8), Brand = c('GS','GS','MN','MN','PG','MN')    ) 

产生数据框:

     Term Category Count Rate Brand
1     dog      pet    12  0.4    GS
2     cat      pet    14  0.7    GS
3    lion     wild    19  0.3    MN
4   tiger     wild     7  0.6    MN
5  pigeon      pet    11  0.1    PG
6 vulture     wild    10  0.8    MN

我希望将此数据框转换为以下resultDF

Category         pet              wild              
Term             dog,cat,pigeon   lion,tiger,vulture
Countlessthan13  dog,pigeon       tiger,vulture     
Ratemorethan0.5  cat              tiger,vulture     
Brand            GS,PG            MN                

行标题表示类似 Countlessthan13 的操作意味着 Count < 13 应用于术语然后进行分组。另请注意,品牌名称是独一无二的,不会重复。

我已经尝试过 dcast 和 melt ......但没有得到想要的结果。

4

1 回答 1

3

我们可以使用data.table. 将'data.frame'转换为'data.table'(setDT(mydf)),按'Category'分组,通过'Count'小于13或'Rate'大于0.5的'Term'值paste创建一些汇总列,unique以及“品牌”pasteunique元素。

library(data.table)
dt <- setDT(mydf)[, .(Term = paste(unique(Term), collapse=","),
                      Countlesstthan13 =  paste(unique(Term[Count < 13]), collapse=","),

                      Ratemorethan0.5 = paste(unique(Term[Rate > 0.5]), collapse=","), 
                      Brand = paste(unique(Brand), collapse=",")), by = Category]

从汇总数据集 ('dt') 中,我们melt通过将 'id.var' 指定为 'Category' 来转换为 'long' 格式,然后dcast将其返回为 'wide' 格式。

dcast(melt(dt, id.var = "Category", variable.name = "category"),
                            category ~Category, value.var = "value")
#           category            pet               wild
#1:             Term dog,cat,pigeon lion,tiger,vulture
#2: Countlesstthan13     dog,pigeon      tiger,vulture
#3:  Ratemorethan0.5            cat      tiger,vulture
#4:            Brand          GS,PG                 MN
于 2016-08-19T06:35:09.490 回答