14

我正在寻找一个 5 元素排序的排序网络实现,但是由于我找不到关于 SO 的好的参考,我想要求对所有 n 的小值进行排序网络,至少 n=3通过 n=6 但更高的值也会很棒。一个好的答案至少应该将它们列为“交换”(对 2 个元素排序)操作的序列,但也可以很好地看到低阶排序网络的递归分解。

对于我的应用程序,我实际上只关心 5 个元素的中位数,而不是真正将它们按顺序排列。也就是说,只要中位数在正确的位置结束,其他 4 个元素的顺序可能在结果中未指定。可以使用与排序网络相关的方法来计算交换次数少于执行完整排序的中位数吗?如果是这样,那么对我的问题(对于 n = 5)和其他情况的这种解决方案也将是一个很好的答案。

(注意:我已将此问题标记为 C,因为 C 是我使用的语言,我怀疑遵循 C 标签的人有很好的答案,但我并不关心答案是否实际上是用 C 和伪代码编写的只要它很容易翻译成C,只要满足上述标准,它自然应该这样做。)

4

3 回答 3

18

从每个部分中选择一个,大概是在您的硬件上运行最快的那个,因为我们坚定地处于“恶魔优化”领域:http ://smarterrecall.com/networks.html ,转载如下:

我创建了这个站点来列出使用 matlab 中的程序编写的最多 6 个输入的所有可能的最佳排序网络。最长的运行时间是 45 秒的 5 个输入。如果您有兴趣与我联系,可以通过 rpl1 [AT] rice [DOT] edu Cheers,Richard L.

----------

 - 2-input: 1 network

    [[1 2]]


----------


 - 3-input: 6 networks

[[1 2][1 3][2 3]]
[[1 2][2 3][1 2]]
[[1 3][1 2][2 3]]
[[1 3][2 3][1 2]]
[[2 3][1 2][2 3]]
[[2 3][1 3][1 2]]


----------

 - 4-input: 3 networks

[[1 2][3 4][1 3][2 4][2 3]]
[[1 3][2 4][1 2][3 4][2 3]]
[[1 4][2 3][1 2][3 4][2 3]]


----------

 - 5-input: 180 networks

    [[1 2][3 4][1 3][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 2][3 4][1 3][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 4][1 3][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 2][3 4][1 3][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 2][3 4][1 4][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 4][1 4][3 5][1 3][2 5][2 3][4 5][3 4]]
    [[1 2][3 4][1 5][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 2][3 4][1 5][2 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 2][3 4][1 5][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 4][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 2][3 4][2 4][3 5][1 2][4 5][1 3][2 4][2 3]]
    [[1 2][3 4][2 4][3 5][1 3][2 5][2 3][4 5][3 4]]
    [[1 2][3 5][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 2][3 5][1 3][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 5][1 3][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 2][3 5][1 3][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 2][3 5][1 4][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 2][3 5][1 4][2 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 2][3 5][1 4][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 5][1 5][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 2][3 5][1 5][3 4][1 3][2 4][2 3][4 5][3 4]]
    [[1 2][3 5][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 2][3 5][2 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[1 2][3 5][2 5][3 4][1 3][2 4][2 3][4 5][3 4]]
    [[1 2][4 5][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 2][4 5][1 3][2 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 2][4 5][1 3][2 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 2][4 5][1 4][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 2][4 5][1 4][2 3][2 4][3 5][1 2][3 4][2 3]]
    [[1 2][4 5][1 4][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 2][4 5][1 4][3 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 2][4 5][1 5][2 3][2 4][3 5][1 2][3 4][2 3]]
    [[1 2][4 5][1 5][3 4][1 3][2 4][2 3][4 5][3 4]]
    [[1 2][4 5][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 2][4 5][2 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[1 2][4 5][2 5][3 4][1 3][2 4][2 3][4 5][3 4]]
    [[1 3][2 4][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 3][2 4][1 2][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 4][1 2][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 3][2 4][1 2][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 3][2 4][1 4][2 5][1 2][3 5][2 3][4 5][3 4]]
    [[1 3][2 4][1 4][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 4][1 5][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 3][2 4][1 5][3 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 3][2 4][1 5][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 4][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 3][2 4][2 5][3 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 3][2 4][2 5][3 4][1 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 3][2 5][1 2][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 5][1 2][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 3][2 5][1 2][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 3][2 5][1 4][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 3][2 5][1 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][2 5][1 4][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 5][1 5][2 4][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][2 5][1 5][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 3][2 5][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 3][2 5][2 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][2 5][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 3][4 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 3][4 5][1 2][3 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 3][4 5][1 2][3 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 3][4 5][1 4][2 3][1 2][4 5][2 4][3 5][3 4]]
    [[1 3][4 5][1 4][2 3][2 4][3 5][1 2][3 4][2 3]]
    [[1 3][4 5][1 4][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][4 5][1 4][2 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 3][4 5][1 5][2 3][2 4][3 5][1 2][3 4][2 3]]
    [[1 3][4 5][1 5][2 4][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][4 5][2 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 3][4 5][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 3][4 5][2 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[1 4][2 3][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 4][2 3][1 2][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 3][1 2][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 4][2 3][1 2][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 4][2 3][1 3][2 5][1 2][4 5][2 4][3 5][3 4]]
    [[1 4][2 3][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 4][2 3][1 5][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 4][2 3][1 5][3 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 4][2 3][1 5][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 3][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 3][2 5][3 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 4][2 3][2 5][3 4][1 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 4][2 5][1 2][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 5][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 4][2 5][1 2][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 5][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 4][2 5][1 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][2 5][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 4][2 5][1 5][2 3][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][2 5][1 5][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][2 5][2 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][2 5][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 4][2 5][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 4][3 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 4][3 5][1 2][4 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 4][3 5][1 2][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 4][3 5][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 4][3 5][1 3][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][3 5][1 3][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][3 5][1 3][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][3 5][1 5][2 3][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][3 5][1 5][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 4][3 5][2 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 4][3 5][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 4][3 5][2 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[1 5][2 3][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 5][2 3][1 2][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 3][1 2][4 5][1 4][2 3][2 4][3 5][3 4]]
    [[1 5][2 3][1 2][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 5][2 3][1 3][2 4][1 2][4 5][2 4][3 5][3 4]]
    [[1 5][2 3][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 5][2 3][1 4][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 3][1 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 3][1 4][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 3][2 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 3][2 4][3 5][1 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 3][2 5][3 4][1 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 4][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[1 5][2 4][1 2][3 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 4][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 5][2 4][1 2][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 4][1 3][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 4][1 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 4][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[1 5][2 4][1 4][2 3][1 2][3 5][2 3][4 5][3 4]]
    [[1 5][2 4][1 4][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][2 4][2 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][2 4][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 5][2 4][2 5][3 4][1 3][4 5][1 2][3 4][2 3]]
    [[1 5][3 4][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 5][3 4][1 2][4 5][1 3][2 4][2 3][4 5][3 4]]
    [[1 5][3 4][1 2][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[1 5][3 4][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[1 5][3 4][1 3][2 4][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][3 4][1 3][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][3 4][1 3][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][3 4][1 4][2 3][1 2][3 5][2 3][4 5][3 4]]
    [[1 5][3 4][1 4][2 5][2 3][4 5][1 2][3 4][2 3]]
    [[1 5][3 4][2 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[1 5][3 4][2 3][4 5][1 4][3 5][1 2][3 4][2 3]]
    [[1 5][3 4][2 4][3 5][1 2][4 5][1 3][2 4][2 3]]
    [[2 3][4 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[2 3][4 5][1 2][3 5][1 4][2 3][2 4][3 5][3 4]]
    [[2 3][4 5][1 2][3 5][2 5][3 4][1 3][2 4][2 3]]
    [[2 3][4 5][1 3][2 4][1 2][4 5][2 4][3 5][3 4]]
    [[2 3][4 5][1 3][2 4][1 4][3 5][1 2][3 4][2 3]]
    [[2 3][4 5][1 3][2 5][1 4][3 5][1 2][3 4][2 3]]
    [[2 3][4 5][1 4][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[2 3][4 5][1 4][3 5][1 2][3 4][2 3][4 5][3 4]]
    [[2 3][4 5][1 4][3 5][2 3][4 5][1 2][3 4][2 3]]
    [[2 3][4 5][1 5][2 4][1 2][3 4][2 3][4 5][3 4]]
    [[2 3][4 5][1 5][2 4][1 4][3 5][1 2][3 4][2 3]]
    [[2 3][4 5][1 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[2 4][3 5][1 2][3 4][1 3][2 5][2 3][4 5][3 4]]
    [[2 4][3 5][1 2][4 5][1 3][2 4][2 3][4 5][3 4]]
    [[2 4][3 5][1 2][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[2 4][3 5][1 3][2 5][1 2][3 4][2 3][4 5][3 4]]
    [[2 4][3 5][1 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[2 4][3 5][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[2 4][3 5][1 4][2 3][1 2][3 5][2 3][4 5][3 4]]
    [[2 4][3 5][1 4][2 3][1 3][4 5][1 2][3 4][2 3]]
    [[2 4][3 5][1 4][2 5][1 3][4 5][1 2][3 4][2 3]]
    [[2 4][3 5][1 5][2 3][1 2][3 4][2 3][4 5][3 4]]
    [[2 4][3 5][1 5][2 3][1 3][4 5][1 2][3 4][2 3]]
    [[2 4][3 5][1 5][3 4][1 2][4 5][1 3][2 4][2 3]]
    [[2 5][3 4][1 2][3 5][1 3][2 4][2 3][4 5][3 4]]
    [[2 5][3 4][1 2][4 5][1 3][2 4][2 3][4 5][3 4]]
    [[2 5][3 4][1 2][4 5][2 5][3 4][1 3][2 4][2 3]]
    [[2 5][3 4][1 3][2 4][1 2][3 5][2 3][4 5][3 4]]
    [[2 5][3 4][1 3][4 5][1 2][3 4][2 3][4 5][3 4]]
    [[2 5][3 4][1 3][4 5][2 4][3 5][1 2][3 4][2 3]]
    [[2 5][3 4][1 4][2 3][1 2][3 5][2 3][4 5][3 4]]
    [[2 5][3 4][1 4][2 3][1 3][4 5][1 2][3 4][2 3]]
    [[2 5][3 4][1 4][3 5][1 2][4 5][1 3][2 4][2 3]]
    [[2 5][3 4][1 5][2 3][1 2][3 4][2 3][4 5][3 4]]
    [[2 5][3 4][1 5][2 3][1 3][4 5][1 2][3 4][2 3]]
    [[2 5][3 4][1 5][2 4][1 3][4 5][1 2][3 4][2 3]]


----------


 - 6-input: 90 networks

    [[1 2][3 4][5 6][1 3][2 5][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 4][5 6][1 3][2 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 2][3 4][5 6][1 4][2 6][3 5][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 2][3 4][5 6][1 5][2 3][4 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 2][3 4][5 6][1 5][2 4][3 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 2][3 4][5 6][1 6][2 4][3 5][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 2][3 5][4 6][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 2][3 5][4 6][1 3][2 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 2][3 5][4 6][1 4][2 3][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 2][3 5][4 6][1 4][2 5][3 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 5][4 6][1 5][2 6][3 4][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 5][4 6][1 6][2 5][3 4][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 6][4 5][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 2][3 6][4 5][1 3][2 5][4 6][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 2][3 6][4 5][1 4][2 3][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 2][3 6][4 5][1 4][2 6][3 5][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 6][4 5][1 5][2 6][3 4][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 2][3 6][4 5][1 6][2 5][3 4][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 4][5 6][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 4][5 6][1 2][3 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 3][2 4][5 6][1 4][2 5][3 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 3][2 4][5 6][1 5][2 3][4 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 3][2 4][5 6][1 5][2 6][3 4][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 3][2 4][5 6][1 6][2 5][3 4][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 3][2 5][4 6][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 3][2 5][4 6][1 2][3 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 3][2 5][4 6][1 4][2 3][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 3][2 5][4 6][1 4][2 6][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 5][4 6][1 5][2 4][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 5][4 6][1 6][2 4][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 6][4 5][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 3][2 6][4 5][1 2][3 5][4 6][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 3][2 6][4 5][1 4][2 3][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 3][2 6][4 5][1 4][2 5][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 6][4 5][1 5][2 4][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 3][2 6][4 5][1 6][2 4][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 3][5 6][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 3][5 6][1 2][3 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 4][2 3][5 6][1 3][2 5][4 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 4][2 3][5 6][1 5][2 4][3 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 3][5 6][1 5][2 6][3 4][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 3][5 6][1 6][2 5][3 4][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 3][2 6][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 5][2 3][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 5][3 6][1 6][2 3][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 2][3 6][4 5][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 3][2 5][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 5][2 3][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 4][2 6][3 5][1 6][2 3][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 3][4 6][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 5][2 3][4 6][1 2][3 6][4 5][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 5][2 3][4 6][1 3][2 4][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 5][2 3][4 6][1 4][2 5][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 3][4 6][1 4][2 6][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 3][4 6][1 6][2 4][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 3][2 5][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 3][2 6][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 4][2 3][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 5][2 4][3 6][1 6][2 3][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 2][3 6][4 5][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 3][2 5][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 4][2 3][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 5][2 6][3 4][1 6][2 3][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 3][4 5][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 6][2 3][4 5][1 2][3 5][4 6][1 4][2 3][5 6][2 4][3 5][3 4]]
    [[1 6][2 3][4 5][1 3][2 4][5 6][1 2][3 6][4 5][2 4][3 5][3 4]]
    [[1 6][2 3][4 5][1 4][2 5][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 3][4 5][1 4][2 6][3 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 3][4 5][1 5][2 4][3 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 2][3 4][5 6][1 3][2 5][4 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 2][3 6][4 5][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 3][2 5][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 3][2 6][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 4][2 3][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 6][2 4][3 5][1 5][2 3][4 6][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 2][3 5][4 6][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 2][3 6][4 5][1 3][2 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 3][2 4][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 3][2 6][4 5][1 2][3 4][5 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 4][2 3][5 6][1 2][3 5][4 6][2 3][4 5][3 4]]
    [[1 6][2 5][3 4][1 5][2 3][4 6][1 2][3 4][5 6][2 3][4 5][3 4]] 

就我个人而言,我会在使用它之前检查排序网络是否正确,而不是在互联网上获取一些随机页面的单词。蛮力“仅”需要针对有限多个输入运行它:“显然”n!输入就足够了,事实上也是如此2**nhttps://en.wikipedia.org/wiki/Sorting_network#Zero-one_principle)。

所有最优的 5 网络在最后一次交换中都包含“3”,因此在较少的交换中选择中值并不那么容易。不过,它可以通过 6 次比较来完成。如果您可以忽略有关该问题的抱怨,那么这里的代码比您需要的要多得多:

在 C# 中计算“五的中位数”的代码

要选择中位数,您不一定要进行任何交换,如果您想保留所有 5 个值,则可能需要进行一次无条件交换。一个动作可能就足够了。

于 2010-10-11T02:24:14.273 回答
2

提问者对基于排序网络的 5 中位数实现特别感兴趣,所以我将讨论这个具体案例。对文献的简要回顾表明,根据各种指标,最佳解决方案是什么样的。

Michael Codish、Luís Cruz-Filipe、Thorsten Ehlers、Mike Müller 和 Peter Schneider-Kamp。“排序网络:到最后再回来。” Journal of Computer and System Sciences (2016) 在表 1 中显示,对于n =5,compare-swap 的最小数量为 9,网络的最小深度为 5。因为每个 compare-swap 相当于两个 min/最大操作,所需的最小/最大操作的最小数量是 18。

Lukáŝ Sekanina,“中值电路的进化设计空间探索”。在:EvoWorkshops,2004 年 3 月,第 240-249 页,给出了表 1 中最优五输入中值选择网络所需的最小/最大操作数为 10。

威廉·加萨奇、韦恩·凯利和威廉·普格。“为小 i, n 找到第 i 个最大的 n。” ACM SIGACT 新闻27,不。2 (1996):88-96,表 1:5 的中位数至少需要 6 次比较。

通常,具有最少操作数的排序网络不会简单地通过消除冗余操作而简化为具有最少操作数的中值选择网络。但是有可能找到至少对于某些n值以最佳方式减少的网络。对于n = 5,对此类网络进行暴力搜索是可行的。

下面的代码显示了包含 9 个比较交换操作或 18 个最小/最大操作的五输入排序网络的四种变体。当使用这些编译时,FULL_SORT = 0会变成具有 10 分钟/最大操作的中值选择网络。所以根据这个指标,排序和中值选择都是最优的。

但是,当用作排序网络时,所有四个变体的深度都是 6,而不是最小的 5。此外,当配置为基于比较而不是最小/最大操作的中值选择网络时,都需要七次而不是最少的六次比较。

Compiler Explorer (godbolt) 的示例编译结果:使用 18 min/max 操作进行五输入排序,使用 10 分钟/最大操作进行五输入中位数

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define VARIANT       1
#define USE_MIN_MAX   1
#define FULL_SORT     0

typedef float T;

#if USE_MIN_MAX
#define MIN(a,b) ((T)(fmin(a,b)))
#define MAX(a,b) ((T)(fmax(a,b)))
#define SWAP(i,j) do { T s = MIN(a##i,a##j); T t = MAX(a##i,a##j); a##i = s; a##j = t; } while (0)
#else // USE_MIN_MAX
#define MIN(a,b) (((a) > (b)) ? (b) : (a))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define SWAP(i,j) do { if (a##i > a##j) { T temp = a##i; a##i = a##j; a##j = temp; }} while (0)
#endif // USE_MIN_MAX

/* Use sorting/median network to fully or partially sort array of five values
   and return the median value
*/
T network5 (T *a)
{
    // copy to scalars
    T a0, a1, a2, a3, a4;
    a0=a[0];a1=a[1];a2=a[2];a3=a[3];a4=a[4];

#if VARIANT == 1
   SWAP (0, 1);  SWAP (2, 3);
   SWAP (0, 2);  SWAP (1, 3);
   SWAP (2, 1);
   SWAP (1, 4);
   SWAP (1, 2);
   SWAP (0, 1);  SWAP (3, 4);
#elif VARIANT == 2
    SWAP (3, 4);  SWAP (0, 2);
    SWAP (2, 4);  SWAP (0, 3);
    SWAP (2, 3);
    SWAP (1, 2);
    SWAP (0, 1);  SWAP (2, 3);
    SWAP (3, 4);
#elif VARIANT == 3
    SWAP (3, 2);  SWAP (0, 4);
    SWAP (2, 4);  SWAP (0, 3);
    SWAP (2, 3);
    SWAP (1, 2);
    SWAP (0, 1);  SWAP (2, 3);
    SWAP (3, 4);
#elif VARIANT == 4 
    SWAP (2, 4);  SWAP (0, 1);
    SWAP (0, 2);  SWAP (1, 4);
    SWAP (2, 3);
    SWAP (1, 2);
    SWAP (2, 3);  SWAP (0, 1);
    SWAP (3, 4);
#else
#error unsupported VARIANT
#endif

#if FULL_SORT
    // copy back sorted results
    a[0]=a0;a[1]=a1;a[2]=a2;a[3]=a3;a[4]=a4;
#endif
    // return median-of-5
    return a2;
}
于 2017-10-20T18:07:40.167 回答
1

评论太长了。Falken 教授的上述回答可以在 MATLAB 中通过以下方式进行验证:使用一些查找/替换或 regex-fu,编写

sn{3} = [...
    [[1,2],[1,3],[2,3]];...
    [[1,2],[2,3],[1,2]];...
    [[1,3],[1,2],[2,3]];...
    [[1,3],[2,3],[1,2]];...
    [[2,3],[1,2],[2,3]];...
    [[2,3],[1,3],[1,2]];
    ];

同样对于 n 的其他值,然后运行

for n = 3:6
    test_in = cellfun(@str2num,num2cell(dec2bin(0:(2^n-1),n)));
    for j = 1:size(sn{n},1)
        test_out = test_in;
        for k = 1:2:size(sn{n},2)
            temp1 = test_out(:,sn{n}(j,k));
            temp2 = test_out(:,sn{n}(j,k+1));
            ind = temp2 < temp1;
            test_out(ind,sn{n}(j,k)) = temp2(ind);
            test_out(ind,sn{n}(j,k+1)) = temp1(ind);
        end
    end
    test = cellfun(@issorted,mat2cell(test_out,ones(1,2^n),n));
    assert(all(test),['n = ',num2str(n),' failed test']);   
end

断言对 n 的每个值都成立。

于 2018-03-12T17:10:47.933 回答