我正在尝试根据文档使用 Keras 构建自动编码器[this example][1]
。因为我的数据很大,所以我想使用生成器来避免将其加载到内存中。
我的模型看起来像:
model = Sequential()
model.add(Convolution2D(16, 3, 3, activation='relu', border_mode='same', input_shape=(3, 256, 256)))
model.add(MaxPooling2D((2, 2), border_mode='same'))
model.add(Convolution2D(8, 3, 3, activation='relu', border_mode='same'))
model.add(MaxPooling2D((2, 2), border_mode='same'))
model.add(Convolution2D(8, 3, 3, activation='relu', border_mode='same'))
model.add(MaxPooling2D((2, 2), border_mode='same'))
model.add(Convolution2D(8, 3, 3, activation='relu', border_mode='same'))
model.add(UpSampling2D((2, 2)))
model.add(Convolution2D(8, 3, 3, activation='relu', border_mode='same'))
model.add(UpSampling2D((2, 2)))
model.add(Convolution2D(16, 3, 3, activation='relu'))
model.add(UpSampling2D((2, 2)))
model.add(Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same'))
model.compile(optimizer='adadelta', loss='binary_crossentropy')
我的发电机:
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory('IMAGE DIRECTORY', color_mode='rgb', class_mode='binary', batch_size=32, target_size=(256, 256))
然后拟合模型:
model.fit_generator(
train_generator,
samples_per_epoch=1,
nb_epoch=1,
verbose=1,
)
我收到此错误:
异常:检查模型目标时出错:预期的 convolution2d_76 有 4 个维度,但得到的数组形状为 (32, 1)
这看起来像是我的批次的大小,而不是样本的大小。我究竟做错了什么?