您的第二个问题在这里是题外话,因为它是统计的。试试 CV SE 网站或 Statalist。
以下是您可以在横截面中执行 (1) 的方法,使用margins
and marginsplot
:
clear
set more off
sysuse auto
set scheme s1color
gen gptm = 1000/mpg
label var gptm "gallons / 1000 miles"
sqreg gptm c.weight##i.foreign, q(10 25 50 75 95) reps(500) coefl
margins, dydx(weight) predict(outcome(q10)) predict(outcome(q25)) predict(outcome(q50)) predict(outcome(q75)) predict(outcome(q95)) at(foreign=(0 1))
marginsplot, xdimension(_predict) xtitle("Quantile") ///
legend(label(1 "Domestic") label(2 "Foreign")) ///
xlabel(none) xlabel(1 "Q10" 2 "Q25" 3 "Q50" 4 "Q75" 5 "Q95", add) ///
title("Marginal Effect of Weight By Origin") ///
ytitle("GPTM")
这会产生一个像这样的图表:
I didn't recast the CI here since it would look cluttered, but that would make it look more like your graph. Just add recastci(rarea)
to the options.
Unfortunately, none of the panel quantile regression commands play nice with factor variables and margins
. But we can hack something together. First, you can calculate the sums of coefficients with nlcom
(instead of more natural lincom
, which the lacks the post
option), store them, and use Ben Jann's coefplot
to graph them. Here's a toy example to give you the main idea where we will look at the effect of tenure for union members:
set more off
estimates clear
webuse nlswork, clear
gen tXu = tenure*union
local quantiles 1 5 10 25 50 75 90 95 99 // K quantiles that you care about
local models "" // names of K quantile models for coefplot to graph
local xlabel "" // for x-axis labels
local j=1 // counter for quantiles
foreach q of numlist `quantiles' {
qregpd ln_wage tenure union tXu, id(idcode) fix(year) quantile(`q')
nlcom (me_tu:_b[tenure]+_b[tXu]), post
estimates store me_tu`q'
local models `"`models' me_tu`q' || "'
local xlabel `"`xlabel' `j++' "Q{sub:`q'}""'
}
di "`models'
di `"`xlabel'"'
coefplot `models' ///
, vertical bycoefs rescale(100) ///
xlab(none) xlabel(`xlabel', add) ///
title("Marginal Effect of Tenure for Union Members On Each Conditional Quantile Q{sub:{&tau}}", size(medsmall)) ///
ytitle("Wage Change in Percent" "") yline(0) ciopts(recast(rcap))
This makes a dromedary curve, which suggests that the effect of tenure is larger in the middle of the wage distribution than at the tails: