-1

我需要创建一个函数,以在时间跨度为 2(xt+1 和 xt-1)的平均值上对 landsat 图像时间序列上的噪声值进行插值。

我正在使用 fmask 产品来检测云和阴影,然后应用插值。

对于一个时间序列:

由于 c2 是 fmask 时间序列的向量(2 代表云,4 代表阴影),而 t2 是 evi 时间序列的向量:

    for (i in 2:(length(t2)-1)){ 
         if (c2[i]==2 | c2[i]==4) 
         t2[i]<-mean(c(t2[i-1], t2[i+1]))}

但是使用 raster 包的 calc 函数是不可能的,因为它不适用于具有 2 个参数的函数。

关于如何处理此问题并将此插值应用于栅格时间序列的所有像素的任何建议?

我正在尝试这个,但它仍然无法正常工作:

for (i in 2:(length(stacklist)-1)){ 
re<-raster(stacklist[i]) 
re1<-raster(stacklist[i+1]) 
re0<-raster(stacklist[i-1]) 
rc<-raster(stacklist2[i]) 
if (rc[i]==2 | rc[i]==4) re[i]<-mean(c(re0[i],re1[i])) 
writeRaster(re,filename =paste0(substr(stacklist[i], 48, 59),"_filtered.tif"))}  
4

1 回答 1

0

我相信以下内容将满足您的需求。我假设:

  1. 时间上的每个图像都是一个光栅。这些被放置在一个RasterStack命名的t2.stack顺序中,随着时间的增加。堆栈中第-个时间段的图像i由 引用t2.stack[[i]]
  2. 对于时间上的每个图像,都有一个 fmask。这允许在不同的时间使用不同的 fmask(尽管它们也可以都是相同的)。这些被放置在一个RasterStack命名的c2.stack. 这些在时间上相应地排序为t2.stack。堆栈中第 - 个时间段的 fmaski由 引用c2.stack[[i]]
  3. 所有栅格(图像和 fmask)都具有相同的大小(相同的行数、列数,因此像素数相同)。

我们先模拟一些数据来说明:

library(raster)
set.seed(42)     ## This is for repeatable results

## Simulate some stacks of rasters over a time period [1,nT=3], yours will be longer
## 1. Each raster is 10 x 10, yours will be larger
## 2. Each c2 raster contains integers uniformly distributed in [0, 5]
## 3. Each t2 raster contains reals unformly distributed in [0,1]
## 4. c2.stack is a stack of c2 rasters over time period, c2.raster[[i]] is c2 at time i
## 5. t2.stack is a stack of t2 rasters over time period, t2.raster[[i]] is t2 at time i
nT <- 3
c2 <- raster(ncol=10, nrow=10)                  
c2[] <- floor(runif(ncell(c2), min=1, max=6))   
c2.stack <- stack(x=c2)
for (i in 2:nT) {
  c2[] <- floor(runif(ncell(c2), min=1, max=6))
  c2.stack <- addLayer(c2.stack, c2)
}

t2 <- raster(ncol=10, nrow=10)
t2[] <- runif(ncell(t2), min=0, max=1)
t2.stack <- stack(x=t2)
for (i in 2:nT) {
  t2[] <- runif(ncell(t2), min=0, max=1)
  t2.stack <- addLayer(t2.stack, t2)
}

## Here is the t2.stack data
print(head(t2.stack[[1]]))
##            1           2          3          4          5          6          7         8          9         10
##1  0.48376814 0.444569528 0.06038559 0.32750602 0.87842905 0.93060489 0.39217846 0.1588468 0.31994760 0.30696562
##2  0.10781125 0.979334303 0.49690343 0.09307467 0.21177366 0.93050075 0.29684641 0.6532182 0.90107048 0.99079579
##3  0.43033322 0.393776922 0.14190890 0.27980670 0.56482222 0.93513951 0.35840015 0.8420072 0.72240921 0.75073599
##4  0.92398845 0.002378107 0.16042991 0.39927295 0.67531958 0.48037202 0.53382878 0.3169502 0.81475759 0.29221952
##5  0.40913209 0.090918308 0.79859664 0.35978525 0.04048758 0.04108634 0.95443424 0.3733412 0.80641967 0.91005901
##6  0.44007621 0.576336503 0.07366780 0.16462739 0.73989078 0.47571101 0.68552095 0.9515149 0.49746449 0.47050063
##7  0.56019195 0.652510121 0.27957350 0.97990759 0.64386411 0.58257844 0.61587103 0.9251403 0.39002290 0.28791969
##8  0.09073596 0.322033904 0.75827011 0.10441293 0.71027785 0.96647738 0.20149123 0.1084887 0.05540218 0.82972352
##9  0.58119776 0.470092375 0.36501412 0.28012463 0.59971585 0.81856961 0.09783228 0.9636895 0.16873644 0.08608341
##10 0.86121070 0.524790602 0.65681088 0.22951937 0.72122603 0.49075039 0.96525559 0.9069425 0.55125053 0.07559910

print(head(t2.stack[[2]]))
##        1           2         3          4         5          6         7         8          9         10
##1  0.02270001 0.513239528 0.6307262 0.41877162 0.8792659 0.10798707 0.9802787 0.2649666 0.08427752 0.38590718
##2  0.12489583 0.581554222 0.2401496 0.72188789 0.1459287 0.15283877 0.2592227 0.7778863 0.42646630 0.06004834
##3  0.11483254 0.482756897 0.9791736 0.81151679 0.5429128 0.07236709 0.4664852 0.3399056 0.68991861 0.51415737
##4  0.51492302 0.545514354 0.4474573 0.08388484 0.9301337 0.01644819 0.4140924 0.2269761 0.09964059 0.48292388
##5  0.65012867 0.921329778 0.3626018 0.85513499 0.3009062 0.46566243 0.1427307 0.8077190 0.66580763 0.06194098
##6  0.43092557 0.396855081 0.6969568 0.65931965 0.4073507 0.30692022 0.2551073 0.6725682 0.89439343 0.84573616
##7  0.39290186 0.079050540 0.8284231 0.07289182 0.1147627 0.63998427 0.3205662 0.1887495 0.39382964 0.86202602
##8  0.34791141 0.001433898 0.9112845 0.95172345 0.4909190 0.46365172 0.5964720 0.9060510 0.17300118 0.78588108
##9  0.23293438 0.577048209 0.8408770 0.13220378 0.8958912 0.45013734 0.8941425 0.2485452 0.08369529 0.04864107
##10 0.97981587 0.484167741 0.8453930 0.41629360 0.4893425 0.18328782 0.7591615 0.3051433 0.16567825 0.03280914

print(head(t2.stack[[3]]))
##           1         2          3            4         5          6           7          8         9        10
##1  0.1365052 0.1771364 0.51956045 0.8111207851 0.1153620 0.89342179 0.575352881 0.14657239 0.9028058 0.2530025
##2  0.1505976 0.7685472 0.23012333 0.3053993280 0.5185696 0.33459967 0.154434968 0.26636957 0.3507546 0.5784584
##3  0.8086018 0.9332703 0.83386334 0.1270027745 0.6494540 0.69035166 0.032044824 0.92048915 0.4784689 0.2665206
##4  0.8565107 0.2291465 0.79194687 0.6467748603 0.4243347 0.09506827 0.003467704 0.53113367 0.5243071 0.2131856
##5  0.7169321 0.9613436 0.51826660 0.1745280223 0.5625401 0.75925817 0.666971338 0.22487292 0.3458498 0.3198318
##6  0.9048984 0.1991984 0.68096302 0.1375177586 0.1069947 0.09285940 0.916448955 0.27706044 0.8857939 0.7728646
##7  0.7950512 0.2056736 0.04819332 0.0388159312 0.2845741 0.34880983 0.737453325 0.25166358 0.5174370 0.7594447
##8  0.6360845 0.2039407 0.99304528 0.0004050434 0.2065700 0.63402809 0.017291825 0.02673547 0.6078406 0.5705414
##9  0.2458533 0.9195251 0.67221620 0.6454504393 0.2082855 0.48061774 0.986518583 0.99311985 0.4507740 0.7148488
##10 0.3165616 0.8336876 0.43397558 0.9959922582 0.8058112 0.48624217 0.538772001 0.34103991 0.0520156 0.4587231

## and the fmask product at time 2 (c2.stack[[2]])
print(head(c2.stack[[2]]))
##   1 2 3 4 5 6 7 8 9 10
##1  4 2 2 2 5 5 4 4 3  1
##2  4 5 4 3 3 3 1 2 4  5
##3  2 3 3 3 4 2 5 5 2  4
##4  5 4 4 5 5 3 5 1 4  4
##5  1 1 3 4 4 5 1 5 2  1
##6  4 2 4 2 4 4 1 1 1  4
##7  5 3 4 1 3 1 3 2 1  1
##8  4 3 3 3 3 1 5 3 4  4
##9  5 5 2 2 4 4 5 4 1  2
##10 1 4 1 1 1 1 3 1 4  4

## Make a copy of the t2.stack so that we can compare results using overlay later
t3.stack <- t2.stack

处理的关键是使用掩码代替条件语句。代码如下:

for (i in 2:(nlayers(t2.stack)-1)) { 
  cloud.shadow.mask <- (c2.stack[[i]]==2 | c2.stack[[i]]==4)
  the.mean <- mask((t2.stack[[i-1]] + t2.stack[[i+1]])/2, cloud.shadow.mask, 
           maskvalue=FALSE, updatevalue=0.)
  the.middle <- mask(t2.stack[[i]], cloud.shadow.mask, 
         maskvalue=TRUE, updatevalue=0.)
  t2.stack[[i]] <- the.mean + the.middle
}

笔记:

  1. cloud.shadow.mask是一个栅格,TRUE当像素处有云或阴影时,否则为假。
  2. 在栅格上使用和mask之间的平均值t2.stack[[i-1]]t2.stack[[i+1]]将那些像素设置cloud.shadow.mask为零FALSE
  3. 相反,设置那些像素mask的栅格为零。t2.stack[[i]]cloud.shadow.maskTRUE
  4. 然后添加这两个栅格进行更新t2.stack[[i]]

以下是仅计算nT=3where的结果:t2.stack[[2]]

print(head(t2.stack[[2]]))
##           1           2         3          4         5          6         7         8          9         10
##1  0.3101367 0.310852970 0.2899730 0.56931340 0.8792659 0.10798707 0.4837657 0.1527096 0.08427752 0.38590718
##2  0.1292044 0.581554222 0.3635134 0.72188789 0.1459287 0.15283877 0.2592227 0.4597939 0.62591255 0.06004834
##3  0.6194675 0.482756897 0.9791736 0.81151679 0.6071381 0.81274558 0.4664852 0.3399056 0.60043905 0.50862828
##4  0.5149230 0.115762292 0.4761884 0.08388484 0.9301337 0.01644819 0.4140924 0.2269761 0.66953235 0.25270254
##5  0.6501287 0.921329778 0.3626018 0.26715664 0.3015139 0.46566243 0.1427307 0.8077190 0.57613471 0.06194098
##6  0.6724873 0.387767442 0.3773154 0.15107258 0.4234427 0.28428520 0.2551073 0.6725682 0.89439343 0.62168264
##7  0.3929019 0.079050540 0.1638834 0.07289182 0.1147627 0.63998427 0.3205662 0.5884019 0.39382964 0.86202602
##8  0.3634102 0.001433898 0.9112845 0.95172345 0.4909190 0.46365172 0.5964720 0.9060510 0.33162139 0.70013243
##9  0.2329344 0.577048209 0.5186152 0.46278753 0.4040007 0.64959367 0.8941425 0.9784047 0.08369529 0.40046610
##10 0.9798159 0.679239081 0.8453930 0.41629360 0.4893425 0.18328782 0.7591615 0.3051433 0.30163307 0.26716111

对于可能无法放入内存的大图像,请使用overlay而不是calc提高效率。t2.stack在这里,我们使用复制到的原始数据重复计算t3.stack

for (i in 2:(nlayers(t3.stack)-1)) { 
  cloud.shadow.mask <- overlay(c2.stack[[i]], fun = function(x) x == 2 | x == 4)
  the.mean <- overlay(t3.stack[[i-1]], t3.stack[[i+1]], fun = function(x,y) (x+y)/2)
  the.mean <- mask(the.mean, cloud.shadow.mask, maskvalue=FALSE, updatevalue=0.)
  the.middle <- mask(t3.stack[[i]], cloud.shadow.mask, maskvalue=TRUE, updatevalue=0.)
  t3.stack[[i]] <- overlay(the.mean, the.middle, fun=sum)
}

结果是一样的。

print(all.equal(t2.stack[[2]],t3.stack[[2]]))
##[1] TRUE
于 2016-08-08T20:46:04.517 回答