我是 spacy 的新手,我想使用它的 lemmatizer 功能,但我不知道如何使用它,就像我进入单词字符串一样,它将以单词的基本形式返回字符串。
例子:
- '单词'=> '单词'
- “做过”=>“做”
谢谢你。
我是 spacy 的新手,我想使用它的 lemmatizer 功能,但我不知道如何使用它,就像我进入单词字符串一样,它将以单词的基本形式返回字符串。
例子:
谢谢你。
以前的答案很复杂,无法编辑,所以这里有一个更传统的答案。
# make sure your downloaded the english model with "python -m spacy download en"
import spacy
nlp = spacy.load('en')
doc = nlp(u"Apples and oranges are similar. Boots and hippos aren't.")
for token in doc:
print(token, token.lemma, token.lemma_)
输出:
Apples 6617 apples
and 512 and
oranges 7024 orange
are 536 be
similar 1447 similar
. 453 .
Boots 4622 boot
and 512 and
hippos 98365 hippo
are 536 be
n't 538 not
. 453 .
来自官方灯光之旅
如果您只想使用 Lemmatizer,您可以通过以下方式执行此操作:
from spacy.lemmatizer import Lemmatizer
from spacy.lang.en import LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES
lemmatizer = Lemmatizer(LEMMA_INDEX, LEMMA_EXC, LEMMA_RULES)
lemmas = lemmatizer(u'ducks', u'NOUN')
print(lemmas)
输出
['duck']
更新
自 spacy 2.2 版以来,LEMMA_INDEX、LEMMA_EXC 和 LEMMA_RULES 已被捆绑到一个Lookups
对象中:
import spacy
nlp = spacy.load('en')
nlp.vocab.lookups
>>> <spacy.lookups.Lookups object at 0x7f89a59ea810>
nlp.vocab.lookups.tables
>>> ['lemma_lookup', 'lemma_rules', 'lemma_index', 'lemma_exc']
您仍然可以直接将词形还原器与单词和 POS(词性)标签一起使用:
from spacy.lemmatizer import Lemmatizer, ADJ, NOUN, VERB
lemmatizer = nlp.vocab.morphology.lemmatizer
lemmatizer('ducks', NOUN)
>>> ['duck']
您可以像上面一样将 POS 标签作为导入的常量传递,也可以作为字符串传递:
lemmatizer('ducks', 'NOUN')
>>> ['duck']
从 spacy.lemmatizer 导入 Lemmatizer、ADJ、名词、动词
代码 :
import os
from spacy.en import English, LOCAL_DATA_DIR
data_dir = os.environ.get('SPACY_DATA', LOCAL_DATA_DIR)
nlp = English(data_dir=data_dir)
doc3 = nlp(u"this is spacy lemmatize testing. programming books are more better than others")
for token in doc3:
print token, token.lemma, token.lemma_
输出 :
this 496 this
is 488 be
spacy 173779 spacy
lemmatize 1510965 lemmatize
testing 2900 testing
. 419 .
programming 3408 programming
books 1011 book
are 488 be
more 529 more
better 615 better
than 555 than
others 871 others
示例参考:这里
我使用 Spacy 2.x 版
import spacy
nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
doc = nlp('did displaying words')
print (" ".join([token.lemma_ for token in doc]))
和输出:
do display word
希望能帮助到你 :)
我用了:
import spacy
nlp = en_core_web_sm.load()
doc = nlp("did displaying words")
print(" ".join([token.lemma_ for token in doc]))
>>> do display word
但它回来了
OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
我用了:
pip3 install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz
摆脱错误。