2

我想使用选项分别评估来自 GAM 模型的预测器的每个组件type="terms"。作为健全性检查,我将结果与使用选项的总预测评估进行了比较type="response"

事实证明,结果不同。这是一个例子:

library(mgcv)
n<-200
sig <- 2
dat <- gamSim(1,n=n,scale=sig)
b<-gam(y~x0+s(I(x1^2))+s(x2)+offset(x3),da=dat)

nd <- data.frame(x0=c(.25,.5),x1=c(.25,.5),x2=c(.25,.5),x3=c(.25,.5))

a1 <- predict.gam(b,newdata=nd,type="response") 
a2 <- rowSums(predict.gam(b,newdata=nd,type="terms")) + b$coefficients[1]
a1 - a2 # Should be zero!
#    1    2 
# 0.25 0.50 

谁能帮我解决这个问题?非常感谢您的帮助!

4

1 回答 1

3

Your model:

y ~ x0 + s(I(x1^2)) + s(x2) + offset(x3)

has an offset term.

Offset will be considered by predict.gam when type = "link" or type = "response", but not considered when type = "terms".

a1 <- predict.gam(b, newdata=nd, type="response")
#        1         2 
#11.178280  6.865068 

a2 <- predict.gam(b, newdata=nd, type="terms")
#           x0 s(I(x1^2))      s(x2)
#1 0.006878346 -1.8710120  5.6467813
#2 0.013756691 -0.6037635 -0.1905571
#attr(,"constant")
#(Intercept) 
#   7.145632 

So you have to add offset yourself:

a2 <- rowSums(a2) + b$coef[1] + nd$x3
#        1         2 
#11.178280  6.865068 

Now a1 and a2 are the same.


In case you wonder, I have documentation for you in ?predict.gam:

type: ... When ‘type="terms"’ each component of the linear
      predictor is returned seperately (possibly with standard
      errors): this includes parametric model components, followed
      by each smooth component, **but excludes any offset and any
      intercept**.
于 2016-07-24T19:31:10.120 回答