也许不完全是您问题的答案,因为它要求在 R 中进行优化。但也许以下内容会有所帮助。它无论如何都使用 NLopt 库,我认为这是 R 使用的?如果您在制定 MLE 时需要帮助,请告诉我,但对于具有高斯假设且没有内生性的线性模型,它应该足够简单。
请注意,即使 LN_COBYLA 不使用用户提供的渐变,与 cFunc 和 oFunc 中的模式匹配也会忽略它。我尝试使用 LD_LBFGS,但它不支持 AddEqualZeroConstraint()。
[编辑]
添加可以用作模板的完整示例。它不是惯用的,也很丑陋,但说明了这一点。但是,在此示例中,约束将导致其退化。您需要 NLOptNet、MathNet.Numerics、Fsharp Charting。也许它可以帮助其他希望在 F# 中进行约束优化的人。
open System
open System.IO
open FSharp.Core.Operators
open MathNet.Numerics
open MathNet.Numerics.LinearAlgebra
open MathNet.Numerics.LinearAlgebra.Double
open MathNet.Numerics.Distributions
open DiffSharp.Numerical.Float64
open NLoptNet
let (.*) (m1 : Matrix<float>) (m2 : Matrix<float>) =
m1.Multiply(m2)
let (.+) (m1 : Matrix<float>) (m2 : Matrix<float>) =
m1.Add(m2)
let (.-) (m1 : Matrix<float>) (m2 : Matrix<float>) =
m1.Subtract(m2)
let V = matrix [[1.; 0.5; 0.2]
[0.5; 1.; 0.]
[0.2; 0.; 1.]]
let dat = (DenseMatrix.init 200 3 ( fun i j -> Normal.Sample(0., 1.) )) .* V.Cholesky().Factor
let y = DenseMatrix.init 200 1 (fun i j -> 0.)
let x0 = DenseMatrix.init 200 1 (fun i j -> 0.)
let x1 = DenseMatrix.init 200 1 (fun i j -> 0.)
for i in 0 .. 199 do
y.[i, 0] <- dat.[i, 0]
x0.[i, 0] <- dat.[i, 1]
x1.[i, 0] <- dat.[i, 2]
let ll (th : float array) =
let t1 = x0.Multiply(th.[0]) .+ x1.Multiply(th.[1])
let res = (y .- t1).PointwisePower(2.)
res.ColumnAbsoluteSums().Sum() / 200.
let oFunc (th : float array) (gradvec : float array) =
match gradvec with
| null -> ()
| _ -> (grad ll th).CopyTo(gradvec, 0)
ll th
let cFunc (th : float array) (gradvec : float array) =
match gradvec with
| null -> ()
| _ -> (grad ll th).CopyTo(gradvec, 0)
th.[0] + th.[1]
let fitFunc () =
let solver = new NLoptSolver(NLoptAlgorithm.LN_COBYLA, uint32(2), 1e-7, 100000)
solver.SetLowerBounds([|-10.; -10.;|])
solver.SetUpperBounds([|10.; 10.;|])
//solver.AddEqualZeroConstraint(cFunc)
solver.SetMinObjective(oFunc)
let initialValues = [|1.; 2.;|]
let objReached, finalScore = solver.Optimize(initialValues)
objReached |> printfn "%A"
let fittedParams = initialValues
fittedParams |> printfn "%A"
fittedParams
let fittedParams = fitFunc() |> DenseVector
let yh = DenseMatrix.init 200 1 (fun i j -> 0.)
for i in 0 .. 199 do
yh.[i, 0] <- dat.[i, 1] * fittedParams.[0] + dat.[i, 2] * fittedParams.[1]
Chart.Combine([Chart.Line(y.Column(0), Name="y")
Chart.Line(yh.Column(0), Name="yh")
|> Chart.WithLegend(Title="Model", Enabled=true)] )
|> Chart.Show