我的情况 - 在输入时我有List<List<Float>>
(单词表示向量列表)。并且 -Double
在一个序列的输出中有一个。
所以我建立了下一个结构(第一个索引 - 示例编号,第二个 - 句子项目编号,第三个 - 词向量元素编号): http: //pastebin.com/KGdjwnki
并在输出中:http: //pastebin.com/fY8zrxEL
但是当我将下一个(http://pastebin.com/wvFFC4Hw)之一添加到 model.output 时 - 我得到 vector [0.25, 0.24, 0.25, 0.25]
,而不是一个值。
有什么问题?附加代码(在 Kotlin)。classCount
是一个。
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork
import org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
import org.deeplearning4j.nn.api.OptimizationAlgorithm
import org.deeplearning4j.nn.conf.Updater
import org.deeplearning4j.nn.weights.WeightInit
import org.deeplearning4j.nn.conf.layers.GravesLSTM
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer
import org.deeplearning4j.nn.conf.BackpropType
import org.nd4j.linalg.api.ndarray.INDArray
import org.nd4j.linalg.cpu.nativecpu.NDArray
import org.nd4j.linalg.indexing.NDArrayIndex
import org.nd4j.linalg.factory.Nd4j
import org.nd4j.linalg.lossfunctions.LossFunctions
import java.util.*
class ClassifierNetwork(wordVectorSize: Int, classCount: Int) {
data class Dimension(val x: Array<Int>, val y: Array<Int>)
val model: MultiLayerNetwork
val optimization = OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT
val iterations = 1
val learningRate = 0.1
val rmsDecay = 0.95
val seed = 12345
val l2 = 0.001
val weightInit = WeightInit.XAVIER
val updater = Updater.RMSPROP
val backtropType = BackpropType.TruncatedBPTT
val tbpttLength = 50
val epochs = 50
var dimensions = Dimension(intArrayOf(0).toTypedArray(), intArrayOf(0).toTypedArray())
init {
val baseConfiguration = Builder().optimizationAlgo(optimization)
.iterations(iterations).learningRate(learningRate).rmsDecay(rmsDecay).seed(seed).regularization(true).l2(l2)
.weightInit(weightInit).updater(updater)
.list()
baseConfiguration.layer(0, GravesLSTM.Builder().nIn(wordVectorSize).nOut(64).activation("tanh").build())
baseConfiguration.layer(1, GravesLSTM.Builder().nIn(64).nOut(32).activation("tanh").build())
baseConfiguration.layer(2, GravesLSTM.Builder().nIn(32).nOut(16).activation("tanh").build())
baseConfiguration.layer(3, RnnOutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MCXENT)
.activation("softmax").weightInit(WeightInit.XAVIER).nIn(16).nOut(classCount).build())
val cfg = baseConfiguration.build()!!
cfg.backpropType = backtropType
cfg.tbpttBackLength = tbpttLength
cfg.tbpttFwdLength = tbpttLength
cfg.isPretrain = false
cfg.isBackprop = true
model = MultiLayerNetwork(cfg)
}
private fun dataDimensions(x: List<List<Array<Double>>>, y: List<Array<Double>>): Dimension {
assert(x.size == y.size)
val exampleCount = x.size
assert(x.size > 0)
val sentenceLength = x[0].size
assert(sentenceLength > 0)
val wordVectorLength = x[0][0].size
assert(wordVectorLength > 0)
val classCount = y[0].size
assert(classCount > 0)
return Dimension(
intArrayOf(exampleCount, wordVectorLength, sentenceLength).toTypedArray(),
intArrayOf(exampleCount, classCount).toTypedArray()
)
}
data class Fits(val x: INDArray, val y: INDArray)
private fun fitConversion(x: List<List<Array<Double>>>, y: List<Array<Double>>): Fits {
val dim = dataDimensions(x, y)
val xItems = ArrayList<INDArray>()
for (i in 0..dim.x[0]-1) {
val itemList = ArrayList<DoubleArray>();
for (j in 0..dim.x[1]-1) {
var rowList = ArrayList<Double>()
for (k in 0..dim.x[2]-1) {
rowList.add(x[i][k][j])
}
itemList.add(rowList.toTypedArray().toDoubleArray())
}
xItems.add(Nd4j.create(itemList.toTypedArray()))
}
val xFits = Nd4j.create(xItems, dim.x.toIntArray(), 'c')
val yItems = ArrayList<DoubleArray>();
for (i in 0..y.size-1) {
yItems.add(y[i].toDoubleArray())
}
val yFits = Nd4j.create(yItems.toTypedArray())
return Fits(xFits, yFits)
}
private fun error(epoch: Int, x: List<List<Array<Double>>>, y: List<Array<Double>>) {
var totalDiff = 0.0
for (i in 0..x.size-1) {
val source = x[i]
val result = y[i]
val realResult = predict(source)
var diff = 0.0
for (j in 0..result.size-1) {
val elementDiff = result[j] - realResult[j]
diff += Math.pow(elementDiff, 2.0)
}
diff = Math.sqrt(diff)
totalDiff += Math.pow(diff, 2.0)
}
totalDiff = Math.sqrt(totalDiff)
print("Epoch ")
print(epoch)
print(", diff ")
println(totalDiff)
}
fun train(x: List<List<Array<Double>>>, y: List<Array<Double>>) {
dimensions = dataDimensions(x, y)
val(xFit, yFit) = fitConversion(x, y)
for (i in 0..epochs-1) {
model.input = xFit
model.labels = yFit
model.fit()
error(i+1, x, y)
}
}
fun predict(x: List<Array<Double>>): Array<Double> {
val xList = ArrayList<DoubleArray>();
for (i in 0..dimensions.x[1]-1) {
var row = ArrayList<Double>()
for (j in 0..dimensions.x[2]-1) {
row.add(x[j][i])
}
xList.add(row.toDoubleArray())
}
val xItem = Nd4j.create(xList.toTypedArray())
val y = model.output(xItem)
val result = ArrayList<Double>()
return result.toTypedArray()
}
}
更新。似乎下一个示例有“近”任务,所以稍后我会检查它并发布解决方案:https ://github.com/deeplearning4j/dl4j-0.4-examples/blob/master/dl4j-examples/src/main/java /org/deeplearning4j/examples/recurrent/word2vecsentiment/Word2VecSentimentRNN.java