Michael Kerrisk has a detailed example in his "The Linux Programming Interface" book:
/* ptmr_sigev_thread.c
This program demonstrates the use of threads as the notification mechanism
for expirations of a POSIX timer. Each of the program's command-line
arguments specifies the initial value and interval for a POSIX timer. The
format of these arguments is defined by the function itimerspecFromStr().
The program creates and arms one timer for each command-line argument.
The timer notification method is specified as SIGEV_THREAD, causing the
timer notifications to be delivered via a thread that invokes threadFunc()
as its start function. The threadFunc() function displays information
about the timer expiration, increments a global counter of timer expirations,
and signals a condition variable to indicate that the counter has changed.
In the main thread, a loop waits on the condition variable, and each time
the condition variable is signaled, the main thread prints the value of the
global variable that counts timer expirations.
Kernel support for Linux timers is provided since Linux 2.6. On older
systems, an incomplete user-space implementation of POSIX timers
was provided in glibc.
*/
#include <signal.h>
#include <time.h>
#include <pthread.h>
#include "curr_time.h" /* Declares currTime() */
#include "tlpi_hdr.h"
#include "itimerspec_from_str.h" /* Declares itimerspecFromStr() */
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
static int expireCnt = 0; /* Number of expirations of all timers */
static void /* Thread notification function */
threadFunc(union sigval sv)
{
timer_t *tidptr;
int s;
tidptr = sv.sival_ptr;
printf("[%s] Thread notify\n", currTime("%T"));
printf(" timer ID=%ld\n", (long) *tidptr);
printf(" timer_getoverrun()=%d\n", timer_getoverrun(*tidptr));
/* Increment counter variable shared with main thread and signal
condition variable to notify main thread of the change. */
s = pthread_mutex_lock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_lock");
expireCnt += 1 + timer_getoverrun(*tidptr);
s = pthread_mutex_unlock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_unlock");
s = pthread_cond_signal(&cond);
if (s != 0)
errExitEN(s, "pthread_cond_signal");
}
int
main(int argc, char *argv[])
{
struct sigevent sev;
struct itimerspec ts;
timer_t *tidlist;
int s, j;
if (argc < 2)
usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);
tidlist = calloc(argc - 1, sizeof(timer_t));
if (tidlist == NULL)
errExit("malloc");
sev.sigev_notify = SIGEV_THREAD; /* Notify via thread */
sev.sigev_notify_function = threadFunc; /* Thread start function */
sev.sigev_notify_attributes = NULL;
/* Could be pointer to pthread_attr_t structure */
/* Create and start one timer for each command-line argument */
for (j = 0; j < argc - 1; j++) {
itimerspecFromStr(argv[j + 1], &ts);
sev.sigev_value.sival_ptr = &tidlist[j];
/* Passed as argument to threadFunc() */
if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
errExit("timer_create");
printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);
if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
errExit("timer_settime");
}
/* The main thread waits on a condition variable that is signaled
on each invocation of the thread notification function. We
print a message so that the user can see that this occurred. */
s = pthread_mutex_lock(&mtx);
if (s != 0)
errExitEN(s, "pthread_mutex_lock");
for (;;) {
s = pthread_cond_wait(&cond, &mtx);
if (s != 0)
errExitEN(s, "pthread_cond_wait");
printf("main(): expireCnt = %d\n", expireCnt);
}
}
Taken from online source code.
Also read the Chapter 23 of the book, this code is explained in great detail there.
To test the code above, one would enter
$ ./ptmr_sigev_thread 5:5 10:10
This will set two timers: one with initial expiry of 5 seconds and an interval with 5 seconds, and the other with 10 respectively.
The definitions for helper functions can be found by following the link on the book's source code above.