我有很长的每日数据序列和 101 列。每个月我cov
都想用第 101 列计算前 100 列中的每一列。这将根据每日数据为 100 列中的每一列生成与第 101 列的月度协方差。似乎可以aggregate
使用带有单个向量的函数来满足我的要求,例如mean
,但我无法使用cov
(或prod
)。
请让我知道dput
几个月是否有帮助。
> library("zoo")
> data <- read.zoo("100Size-BM.csv", header=TRUE, sep=",", format="%Y%m%d")
> head(data[, c("R1", "R2", "R3", "R100", "Mkt.RF")])
R1 R2 R3 R100 Mkt.RF
1963-07-01 -0.00212 0.00398 -0.00472 -0.00362 -0.0066
1963-07-02 -0.00242 0.00678 0.00068 -0.00012 0.0078
1963-07-03 0.00528 0.01078 0.00598 0.00338 0.0063
1963-07-05 0.01738 -0.00932 -0.00072 -0.00012 0.0040
1963-07-08 0.01048 -0.01262 -0.01332 -0.01392 -0.0062
1963-07-09 -0.01052 0.01048 0.01738 0.01388 0.0045
mean
效果很好,并为我提供了我想要的每月数据。
> mean.temp <- aggregate(data[, 1:100], as.yearmon, mean)
> head(mean.temp[, 1:3])
R1 R2 R3
Jul 1963 0.0003845455 7.545455e-05 0.0004300000
Aug 1963 -0.0006418182 2.412727e-03 0.0022263636
Sep 1963 0.0016250000 1.025000e-03 -0.0002600000
Oct 1963 -0.0007952174 2.226522e-03 0.0004873913
Nov 1963 0.0006555556 -5.211111e-03 -0.0013888889
Dec 1963 -0.0027066667 -1.249524e-03 -0.0005828571
但我无法获得使用两个不同列/向量工作的函数。
> cov.temp <- aggregate(data[, 1:100], as.yearmon, cov(x, data[, "Mkt.RF"]))
Error in inherits(x, "data.frame") : object 'x' not found
我也无法制作cov
包装纸。
> f <- function(x) cov(x, data[, "Mkt.RF"])
> cov.temp <- aggregate(data[, 1:100], as.yearmon, f)
Error in cov(x, data[, "Mkt.RF"]) : incompatible dimensions
我应该用for
循环来做到这一点吗?我希望有更多的R
方法。谢谢!