虽然基于迭代器的答案非常好,但如果您正在使用 numpy 数组(正如您提到的那样),则有更好更快的选择事物的方法:
import numpy as np
data = np.array([
[100002, 2006, 1.1, 0.01, 6352],
[100002, 2006, 1.2, 0.84, 304518],
[100002, 2006, 2, 1.52, 148219],
[100002, 2007, 1.1, 0.01, 6292],
[10002, 2006, 1.1, 0.01, 5968],
[10002, 2006, 1.2, 0.25, 104318],
[10002, 2007, 1.1, 0.01, 6800],
[10002, 2007, 4, 2.03, 25446],
[10002, 2008, 1.1, 0.01, 6408] ])
subset1 = data[data[:,0] == 100002]
subset2 = data[data[:,0] == 10002]
这产生
子集1:
array([[ 1.00002e+05, 2.006e+03, 1.10e+00, 1.00e-02, 6.352e+03],
[ 1.00002e+05, 2.006e+03, 1.20e+00, 8.40e-01, 3.04518e+05],
[ 1.00002e+05, 2.006e+03, 2.00e+00, 1.52e+00, 1.48219e+05],
[ 1.00002e+05, 2.007e+03, 1.10e+00, 1.00e-02, 6.292e+03]])
子集2:
array([[ 1.0002e+04, 2.006e+03, 1.10e+00, 1.00e-02, 5.968e+03],
[ 1.0002e+04, 2.006e+03, 1.20e+00, 2.50e-01, 1.04318e+05],
[ 1.0002e+04, 2.007e+03, 1.10e+00, 1.00e-02, 6.800e+03],
[ 1.0002e+04, 2.007e+03, 4.00e+00, 2.03e+00, 2.5446e+04],
[ 1.0002e+04, 2.008e+03, 1.10e+00, 1.00e-02, 6.408e+03]])
如果您事先不知道第一列中的唯一值,则可以使用其中一个numpy.unique1d
或内置函数set
来查找它们。
编辑:我刚刚意识到您想选择具有两列独特组合的数据...在这种情况下,您可能会执行以下操作:
col1 = data[:,0]
col2 = data[:,1]
subsets = {}
for val1, val2 in itertools.product(np.unique(col1), np.unique(col2)):
subset = data[(col1 == val1) & (col2 == val2)]
if np.any(subset):
subsets[(val1, val2)] = subset
(我将子集存储为字典,键是组合的元组......当然还有其他(更好,取决于你在做什么)方法来做到这一点!)