我有这个代码:
"""Softmax."""
import math
scores = [3.0, 1.0, 0.2]
import numpy as np
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
pass # TODO: Compute and return softmax(x)
sum_denominator = 0
powers = []
for item in x:
powers.append(math.e**item)
sum_denominator = sum_denominator + powers[-1]
for idx in range(len(x)):
x[idx] = powers[idx]/sum_denominator
return x
print(softmax(scores))
# Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()
产生这个:
我不确定我是如何得到那个情节的。我知道大分数应该给出大概率,但我无法理解情节。numpy.ones_like对我也没有多大帮助,对吗?:)
编辑:
由于我得到了一个不清楚我在问什么的投票,所以我在问这个,如何从一个向量[0.8360188027814407, 0.11314284146556014, 0.050838355752999165]
中将 softmax 的结果应用于scores
,我得到了那个图。我的意思是这背后的逻辑是什么?
分数(之后vstack()
)是这样的:
[[ -2.00000000e+00 -1.90000000e+00 -1.80000000e+00 -1.70000000e+00 -1.60000000e+00 -1.50000000e+00 -1.40000000e+00 -1.30000000e+00 -1.20000000e+00 -1.10000000e+00 -1.00000000e+00 -9.00000000e-01 -8.00000000e-01 -7.00000000e-01 -6.00000000e-01 -5.00000000e-01 -4.00000000e-01 -3.00000000e-01 -2.00000000e-01 -1.00000000e-01 1.77635684e-15 1.00000000e-01 2.00000000e-01 3.00000000e-01 4.00000000e-01 5.00000000e-01 6.00000000e-01 7.00000000e-01 8.00000000e-01 9.00000000e-01 1.00000000e+00 1.10000000e+00 1.20000000e+00 1.30000000e+00 1.40000000e+00 1.50000000e+00 1.60000000e+00 1.70000000e+00 1.80000000e+00 1.90000000e+00 2.00000000e+00 2.10000000e+00 2.20000000e+00 2.30000000e+00 2.40000000e+00 2.50000000e+00 2.60000000e+00 2.70000000e+00 2.80000000e+00 2.90000000e+00 3.00000000e+00 3.10000000e+00 3.20000000e+00 3.30000000e+00 3.40000000e+00 3.50000000e+00 3.60000000e+00 3.70000000e+00 3.80000000e+00 3.90000000e+00 4.00000000e+00 4.10000000e+00 4.20000000e+00 4.30000000e+00 4.40000000e+00 4.50000000e+00 4.60000000e+00 4.70000000e+00 4.80000000e+00 4.90000000e+00 5.00000000e+00 5.10000000e+00 5.20000000e+00 5.30000000e+00 5.40000000e+00 5.50000000e+00 5.60000000e+00 5.70000000e+00 5.80000000e+00 5.90000000e+00] [ 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00] [ 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01]]