0

我正在对融化的子组进行 Tukey 测试data.frame。结果显示按两列分组的成对比较:类和比较。我现在正试图用来multcompLetters获得一个紧凑的字母显示,但是这个功能似乎在与 2 个分组列的存在作斗争,我无法让它工作。有什么建议么?

library(Rmisc)
library(reshape2)
library(dplyr)
library(broom)
library(multcompView)

melt <- melt(q, id=c("SITE"), value.name="Value", variable.name = "CLASS")
res = melt %>% group_by(CLASS) %>% 
  do(Model = TukeyHSD(aov(Value ~ SITE, data=.)))

d<-as.data.frame(tidy(res,Model))

# d

   CLASS comparison     estimate    conf.low  conf.high adj.p.value
1      W    RPF-IDF  -5.64993001 -18.1629976  6.8631376  0.61578460
2      W    W1F-IDF -10.70481335 -20.9216903 -0.4879364  0.03723251
3      W    WEF-IDF  -2.13203903 -12.3489160  8.0848379  0.94129730
4      W    W1F-RPF  -5.05488334 -17.5679510  7.4581843  0.69432728
5      W    WEF-RPF   3.51789097  -8.9951767 16.0309586  0.87037225
6      W    WEF-W1F   8.57277432  -1.6441026 18.7896513  0.12542147
7      T    RPF-IDF   1.22208275 -11.1641319 13.6082974  0.99314216
8      T    W1F-IDF  12.26239263   2.1490907 22.3756946  0.01265170
9      T    WEF-IDF   1.36837034  -8.7449316 11.4816723  0.98276187
10     T    W1F-RPF  11.04030989  -1.3459048 23.4265246  0.09430748
11     T    WEF-RPF   0.14628759 -12.2399271 12.5325023  0.99998789
12     T    WEF-W1F -10.89402229 -21.0073242 -0.7807204  0.03090941
13     F    RPF-IDF   0.22295726  -0.1514926  0.5974071  0.38471438
14     F    W1F-IDF  -0.02421005  -0.3299470  0.2815269  0.99641763
15     F    WEF-IDF  -0.04371681  -0.3494538  0.2620202  0.97978411
16     F    W1F-RPF  -0.24716731  -0.6216171  0.1272825  0.29647576
17     F    WEF-RPF  -0.26667407  -0.6411239  0.1077757  0.23549377
18     F    WEF-W1F  -0.01950676  -0.3252438  0.2862302  0.99811366

# Data:

structure(list(SITE = c("W1F", "W1F", "W1F", "W1F", "W1F", "W1F", 
"W1F", "W1F", "W1F", "W1F", "WEF", "WEF", "WEF", "WEF", "WEF", 
"WEF", "WEF", "WEF", "WEF", "WEF", "IDF", "IDF", "IDF", "IDF", 
"IDF", "IDF", "IDF", "IDF", "IDF", "IDF", "RPF", "RPF", "RPF", 
"RPF", "RPF"), W = c(50.3248335082344, 32.1503783057506, 33.078146225668, 
26.6243531034585, 46.3001612352147, 39.017867992821, 50.3691477034539, 
40.8967231287003, 32.8336792011662, 37.351932710029, 40.3501921908409, 
51.713346196642, 52.3149154191213, 36.1191920698002, 52.8345251890241, 
48.2627479883595, 53.167623564014, 52.3210532038903, 42.3709659209721, 
45.220404565078, 57.748019765417, 51.0213932709679, 44.7954183956103, 
67.0793645209468, 55.5469854470864, 44.385092330771, 46.5798952048957, 
45.8198852429387, 27.6974478472881, 55.3218546189017, 34.4272809426672, 
45.9434804417808, 56.4296406835413, 43.7876572070559, 39.1599690063483
), T = c(35.0123858739188, 50.2777364658016, 58.0998544379185, 
68.6581227794661, 49.0573561929059, 50.8392988767598, 42.6878613087591, 
53.2791649420957, 61.2798690090587, 53.3021205597255, 46.5495549774445, 
35.3605354095504, 39.576398399117, 52.0145824694998, 37.8823694623313, 
41.2463424906295, 39.7269386021168, 30.2565519241487, 46.8597611217055, 
44.0805126859761, 30.8741813047282, 39.1975023883617, 47.1056477718865, 
26.2644334651233, 30.279851425855, 42.897953960519, 48.894140393732, 
48.0634680307273, 55.3131800922454, 30.9794852866962, 40.0464514559112, 
36.4591028607809, 35.7317459820951, 46.5131719629344, 47.2948635362877
), F = c(0.303677273935923, 0.375264702946496, 0.213096066913728, 
0, 0.215718617028241, 0.227978817744827, 0.249001708826384, 0.0784887376469621, 
0.368000900702354, 0, 0.195050537785858, 0.341983704483877, 0.113484800904093, 
0.348879190090183, 0.252927583087696, 0.130864768191014, 0, 0.18692580417626, 
0, 0.266042808486324, 0.240414212596431, 0.206403192162335, 0.206481788649269, 
0.728224578886221, 0, 0.172345930654518, 0.20051052274632, 0.25307493559239, 
0.265872153122173, 0, 1.44680310336119, 0, 0.228089363397572, 
0.308679771443896, 0.267877729197636)), class = c("tbl_df", "tbl", 
"data.frame"), row.names = c(NA, -35L), .Names = c("SITE", "W", 
"T", "F"))
4

0 回答 0