3

我觉得这应该很容易。我有一本目前采用 glob 格式的术语字典,我已将其转换为正则表达式。我将它们转换为正则表达式的原因是因为我认为 tm 包只适用于它们。没关系。但我无法弄清楚如何通过传递多个字典术语来对 termDocumentMatrix 进行子集化。另一个转折是字典术语有多个长度,有些是 1,有些是 2,有些是 3 个单词。

以下是我当前的代码。

#load libraries
library(tm)
library(stringi)
#Load corpus crude part of tm package
data(crude)
#make tokenizer to account for multi-word dictionaries
myTokenizer <-
function(x)
unlist(lapply(ngrams(words(x), 1:3), paste, collapse = " "), 
use.names =   FALSE)
#make TermDocumentMatrix
tdm<-TermDocumentMatrix(crude, control=list(tokenizer=myTokenizer))
#Make dictionary of regular expressions
dict<-c('^also$', '^told reuters$', '^an emergency$', '^in world oil$')
#This is what I am working with
inspect(
tdm[sapply(dict, function(x) stri_detect_regex(tdm$dimnames$Terms,    
pattern=x)),]
)
4

1 回答 1

1

我现在发现crude数据集是允许测试的那些包之一的一部分。这表明从模式中删除插入符号和美元符号可以找到更多与目标匹配的项目:

> sum( sapply(dict, grepl, x=tdm$dimnames$Terms))
[1] 4
> dict2<-c('also', 'told reuters', 'an emergency', 'in world oil')
> sum( sapply(dict2, grepl, x=tdm$dimnames$Terms))
[1] 51

如果您使用 grep,您可以查看哪些匹配。( grepl 的结果将是 tdm$dimnames$Terms 的 4 倍:

> sapply(dict2, grep, x=tdm$dimnames$Terms)
$also
 [1]  707  708  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752  753
[19]  754 1485 1486 2434 2881 2882 2988 2989 3399 3400 3782 3983 5265 5995 6088 6382 6383 6893
[37] 7427 7428 7524 7525 7605

$`told reuters`
[1] 3013 7209 7210

$`an emergency`
[1]  779  780  781 2437 2642 4205

$`in world oil`
[1] 3276

TDM 的打印方法不是特别有用,但您可以“分解”该值dput以查看里面的内容:

> dput(tdm[ sapply(dict2, grepl, x=tdm$dimnames$Terms), ] )
structure(list(i = c(1L, 2L, 3L, 8L, 9L, 33L, 3L, 16L, 17L, 20L, 
21L, 32L, 3L, 6L, 7L, 22L, 39L, 40L, 3L, 14L, 15L, 36L, 37L, 
38L, 3L, 12L, 13L, 27L, 28L, 41L, 3L, 10L, 11L, 25L, 26L, 30L, 
3L, 4L, 5L, 23L, 24L, 31L, 3L, 4L, 5L, 23L, 24L, 31L, 3L, 18L, 
19L, 29L, 34L, 35L), j = c(6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 
7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 
10L, 10L, 10L, 10L, 10L, 14L, 14L, 14L, 14L, 14L, 14L, 16L, 16L, 
16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 
18L, 18L, 18L), v = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 
    nrow = 41L, ncol = 20L, dimnames = structure(list(Terms = c("ali also", 
    "ali also delivered", "also", "also called", "also called for", 
    "also contributed", "also contributed to", "also delivered", 
    "also delivered \"a", "also denied", "also denied that", 
    "also nigerian", "also nigerian oil", "also no", "also no projection", 
    "also reviews", "also reviews the", "also was", "also was lowered", 
    "but also", "but also reviews", "european weekend also", 
    "group, also", "group, also called", "he also", "he also denied", 
    "is also", "is also nigerian", "louisiana sweet also", "meeting.\" he also", 
    "private group, also", "sector, but also", "sheikh ali also", 
    "sweet also", "sweet also was", "there was also", "was also", 
    "was also no", "weekend also", "weekend also contributed", 
    "who is also"), Docs = c("127", "144", "191", "194", "211", 
    "236", "237", "242", "246", "248", "273", "349", "352", "353", 
    "368", "489", "502", "543", "704", "708")), .Names = c("Terms", 
    "Docs"))), .Names = c("i", "j", "v", "nrow", "ncol", "dimnames"
), class = c("TermDocumentMatrix", "simple_triplet_matrix"), weighting = c("term frequency", 
"tf"))
于 2016-06-16T16:07:52.390 回答